Suppr超能文献

用于制造多层微流控装置的桌面式对准仪。

Desktop aligner for fabrication of multilayer microfluidic devices.

作者信息

Li Xiang, Yu Zeta Tak For, Geraldo Dalton, Weng Shinuo, Alve Nitesh, Dun Wu, Kini Akshay, Patel Karan, Shu Roberto, Zhang Feng, Li Gang, Jin Qinghui, Fu Jianping

机构信息

Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.

Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

出版信息

Rev Sci Instrum. 2015 Jul;86(7):075008. doi: 10.1063/1.4927197.

Abstract

Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

摘要

多层组装是一种常用技术,用于构建具有复杂三维结构和连通性的基于聚二甲基硅氧烷(PDMS)的多层微流控器件,以实现大规模微流控集成。在不同PDMS层的结构特征永久键合之前进行精确对准,对于确定组装的多层微流控器件的成品率和质量至关重要。在此,我们报告一种定制的台式对准仪,它能够对覆盖广泛尺寸范围的PDMS层进行局部和全局对准。在对准仪设计中纳入了两个数字显微镜,以实现直径达4英寸的PDMS结构的精确全局对准。台式对准仪的局部和全局对准精度均确定为约20μm/cm。为了证明其在制造集成多层PDMS微流控器件方面的实用性,我们应用台式对准仪在多层微流控中实现了不同功能PDMS层的精确对准,包括器官芯片装置以及集成了连接位于不同PDMS层中的通道的垂直通道的微流控器件。由于其操作方便、精度高、成本低、重量轻且便于携带,台式对准仪对微流控研究人员实现快速精确对准以制造多层PDMS微流控器件很有用。

相似文献

1
Desktop aligner for fabrication of multilayer microfluidic devices.
Rev Sci Instrum. 2015 Jul;86(7):075008. doi: 10.1063/1.4927197.
3
Control and automation of multilayered integrated microfluidic device fabrication.
Lab Chip. 2017 Jan 31;17(3):557-566. doi: 10.1039/c6lc01534d.
4
7
A portable and affordable aligner for the assembly of microfluidic devices.
HardwareX. 2022 Aug 27;12:e00348. doi: 10.1016/j.ohx.2022.e00348. eCollection 2022 Oct.
9
Microfluidic vias enable nested bioarrays and autoregulatory devices in Newtonian fluids.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12280-4. doi: 10.1073/pnas.0602890103. Epub 2006 Aug 3.
10
Microfluidic PDMS on paper (POP) devices.
Lab Chip. 2016 Dec 20;17(1):120-127. doi: 10.1039/c6lc01250g.

引用本文的文献

2
Magnetic Microtweezers for High-Throughput Bioseparation in Sub-Nanoliter Droplets.
Methods Mol Biol. 2024;2804:163-176. doi: 10.1007/978-1-0716-3850-7_10.
3
A patterned human neural tube model using microfluidic gradients.
Nature. 2024 Apr;628(8007):391-399. doi: 10.1038/s41586-024-07204-7. Epub 2024 Feb 26.
4
Microfluidics based bioimaging with cost-efficient fabrication of multi-level micrometer-sized trenches.
Biomicrofluidics. 2023 Jun 15;17(3):034103. doi: 10.1063/5.0151868. eCollection 2023 May.
5
Addressable microfluidics technology for non-sacrificial analysis of biomaterial implants .
Biomicrofluidics. 2023 Apr 3;17(2):024103. doi: 10.1063/5.0137932. eCollection 2023 Mar.
6
Precision enhanced alignment bonding technique with sacrificial strategy.
Front Bioeng Biotechnol. 2023 Feb 16;11:1105154. doi: 10.3389/fbioe.2023.1105154. eCollection 2023.
7
A portable and affordable aligner for the assembly of microfluidic devices.
HardwareX. 2022 Aug 27;12:e00348. doi: 10.1016/j.ohx.2022.e00348. eCollection 2022 Oct.
9
Design and aligner-assisted fast fabrication of a microfluidic platform for quasi-3D cell studies on an elastic polymer.
Bioact Mater. 2021 Dec 28;15:288-304. doi: 10.1016/j.bioactmat.2021.12.010. eCollection 2022 Sep.
10
A 20-gauge active needle design with thin-film printed circuitry for interventional MRI at 0.55T.
Magn Reson Med. 2021 Sep;86(3):1786-1801. doi: 10.1002/mrm.28804. Epub 2021 Apr 16.

本文引用的文献

1
Microfluidic organs-on-chips.
Nat Biotechnol. 2014 Aug;32(8):760-72. doi: 10.1038/nbt.2989.
4
Accelerating drug discovery via organs-on-chips.
Lab Chip. 2013 Dec 21;13(24):4697-710. doi: 10.1039/c3lc90115g.
5
Microfabrication of human organs-on-chips.
Nat Protoc. 2013 Nov;8(11):2135-57. doi: 10.1038/nprot.2013.137. Epub 2013 Oct 10.
6
Configurable 3D-Printed millifluidic and microfluidic 'lab on a chip' reactionware devices.
Lab Chip. 2012 Sep 21;12(18):3267-71. doi: 10.1039/c2lc40761b. Epub 2012 Aug 9.
7
Three-dimensional fit-to-flow microfluidic assembly.
Biomicrofluidics. 2011 Dec;5(4):46505-465059. doi: 10.1063/1.3670368. Epub 2011 Dec 14.
8
Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.
Lab Chip. 2012 Feb 21;12(4):746-9. doi: 10.1039/c2lc21015k. Epub 2012 Jan 9.
9
Reconstituting organ-level lung functions on a chip.
Science. 2010 Jun 25;328(5986):1662-8. doi: 10.1126/science.1188302.
10
A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips.
Lab Chip. 2010 May 7;10(9):1199-203. doi: 10.1039/b923101c. Epub 2010 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验