Suppr超能文献

基于显著目标检测的RGB-D点云配准

RGB-D Point Cloud Registration Based on Salient Object Detection.

作者信息

Wan Teng, Du Shaoyi, Cui Wenting, Yao Runzhao, Ge Yuyan, Li Ce, Gao Yue, Zheng Nanning

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Aug;33(8):3547-3559. doi: 10.1109/TNNLS.2021.3053274. Epub 2022 Aug 3.

Abstract

We propose a robust algorithm for aligning rigid, noisy, and partially overlapping red green blue-depth (RGB-D) point clouds. To address the problems of data degradation and uneven distribution, we offer three strategies to increase the robustness of the iterative closest point (ICP) algorithm. First, we introduce a salient object detection (SOD) method to extract a set of points with significant structural variation in the foreground, which can avoid the unbalanced proportion of foreground and background point sets leading to the local registration. Second, registration algorithms that rely only on structural information for alignment cannot establish the correct correspondences when faced with the point set with no significant change in structure. Therefore, a bidirectional color distance (BCD) is designed to build precise correspondence with bidirectional search and color guidance. Third, the maximum correntropy criterion (MCC) and trimmed strategy are introduced into our algorithm to handle with noise and outliers. We experimentally validate that our algorithm is more robust than previous algorithms on simulated and real-world scene data in most scenarios and achieve a satisfying 3-D reconstruction of indoor scenes.

摘要

我们提出了一种用于对齐刚性、有噪声且部分重叠的红绿蓝深度(RGB-D)点云的鲁棒算法。为了解决数据退化和分布不均的问题,我们提供了三种策略来提高迭代最近点(ICP)算法的鲁棒性。首先,我们引入一种显著目标检测(SOD)方法,以提取前景中具有显著结构变化的一组点,这可以避免前景和背景点集比例失衡导致的局部配准。其次,仅依赖结构信息进行对齐的配准算法在面对结构无显著变化的点集时无法建立正确的对应关系。因此,设计了一种双向颜色距离(BCD),通过双向搜索和颜色引导来建立精确的对应关系。第三,将最大相关熵准则(MCC)和修剪策略引入我们的算法,以处理噪声和离群值。我们通过实验验证,在大多数场景下,我们的算法在模拟和真实场景数据上比以前的算法更鲁棒,并实现了令人满意的室内场景三维重建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验