Department of Neurology, Pontificia Universidad Católica de Chile School of Medicine, Laboratory of Neuroscience. Marcoleta 391, Santiago, Chile.
Department of Neurology, Pontificia Universidad Católica de Chile School of Medicine, Laboratory of Neuroscience. Marcoleta 391, Santiago, Chile; Faculty of Health Sciences, Universidad San Sebastián, Lota 2465, Santiago, Chile.
Neurochem Int. 2021 Mar;144:104982. doi: 10.1016/j.neuint.2021.104982. Epub 2021 Feb 5.
Microglia serve key functions in the central nervous system (CNS), participating in the establishment and regulation of synapses and the neuronal network, and regulating activity-dependent plastic changes. As the neuroimmune system, they respond to endogenous and exogenous signals to protect the CNS. In aging, one of the main changes is the establishment of inflamm-aging, a mild chronic inflammation that reduces microglial response to stressors. Neuroinflammation depends mainly on the increased activation of microglia. Microglia over-activation may result in a reduced capacity for performing normal functions related to migration, clearance, and the adoption of an anti-inflammatory state, contributing to an increased susceptibility for neurodegeneration. Oxidative stress contributes both to aging and to the progression of neurodegenerative diseases. Increased production of reactive oxygen species (ROS) and neuroinflammation associated with age- and disease-dependent mechanisms affect synaptic activity and neurotransmission, leading to cognitive dysfunction. Astrocytes prevent microglial cell cytotoxicity by mechanisms mediated by transforming growth factor β1 (TGFβ1). However, TGFβ1-Smad3 pathway is impaired in aging, and the age-related impairment of TGFβ signaling can reduce protective activation while facilitating cytotoxic activation of microglia. A critical analysis on the effect of aging microglia on neuronal function is relevant for the understanding of age-related changes on neuronal function. Here, we present evidence in the context of the "microglial dysregulation hypothesis", which leads to the reduction of the protective functions and increased cytotoxicity of microglia, to discuss the mechanisms involved in neurodegenerative changes and Alzheimer's disease.
小胶质细胞在中枢神经系统 (CNS) 中发挥着关键作用,参与突触和神经元网络的建立和调节,并调节活性依赖性的可塑性变化。作为神经免疫系统,它们对外源和内源性信号做出反应,以保护中枢神经系统。在衰老过程中,主要变化之一是形成炎症衰老,一种轻度慢性炎症,降低了小胶质细胞对应激源的反应。神经炎症主要取决于小胶质细胞的过度激活。小胶质细胞过度激活可能导致其执行与迁移、清除和抗炎状态相关的正常功能的能力下降,从而增加神经退行性变的易感性。氧化应激既与衰老有关,也与神经退行性疾病的进展有关。与年龄和疾病相关的机制相关的活性氧 (ROS) 和神经炎症的产生增加会影响突触活动和神经递质传递,导致认知功能障碍。星形胶质细胞通过转化生长因子β1 (TGFβ1) 介导的机制来防止小胶质细胞的细胞毒性。然而,TGFβ1-Smad3 通路在衰老过程中受损,TGFβ 信号的年龄相关性损伤可以减少保护性激活,同时促进小胶质细胞的细胞毒性激活。对衰老小胶质细胞对神经元功能的影响进行批判性分析,对于理解与年龄相关的神经元功能变化具有重要意义。在这里,我们根据“小胶质细胞失调假说”提出了证据,该假说导致小胶质细胞的保护功能降低和细胞毒性增加,讨论了与神经退行性变化和阿尔茨海默病相关的机制。