Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
Sci Rep. 2021 Feb 8;11(1):3272. doi: 10.1038/s41598-021-82215-2.
The initiation of apoptosis is a core mechanism in cellular biology by which organisms control the removal of damaged or unnecessary cells. The irreversible activation of caspases is essential for apoptosis, and mathematical models have demonstrated that the process is tightly regulated by positive feedback and a bistable switch. BAX and SMAC are often dysregulated in diseases such as cancer or neurodegeneration and are two key regulators that interact with the caspase system generating the apoptotic switch. Here we present a mathematical model of how BAX and SMAC control the apoptotic switch. Formulated as a system of ordinary differential equations, the model summarises experimental and computational evidence from the literature and incorporates the biochemical mechanisms of how BAX and SMAC interact with the components of the caspase system. Using simulations and bifurcation analysis, we find that both BAX and SMAC regulate the time-delay and activation threshold of the apoptotic switch. Interestingly, the model predicted that BAX (not SMAC) controls the amplitude of the apoptotic switch. Cell culture experiments using siRNA mediated BAX and SMAC knockdowns validated this model prediction. We further validated the model using data of the NCI-60 cell line panel using BAX protein expression as a cell-line specific parameter and show that model simulations correlated with the cellular response to DNA damaging drugs and established a defined threshold for caspase activation that could distinguish between sensitive and resistant melanoma cells. In summary, we present an experimentally validated dynamic model that summarises our current knowledge of how BAX and SMAC regulate the bistable properties of irreversible caspase activation during apoptosis.
细胞凋亡的启动是细胞生物学的核心机制,通过该机制生物体可以控制清除受损或不必要的细胞。半胱天冬酶的不可逆激活对于细胞凋亡至关重要,数学模型表明该过程受到正反馈和双稳态开关的严格调控。BAX 和 SMAC 在癌症或神经退行性疾病等疾病中经常失调,是与半胱天冬酶系统相互作用产生凋亡开关的两个关键调节剂。在这里,我们提出了一个关于 BAX 和 SMAC 如何控制凋亡开关的数学模型。该模型以常微分方程系统的形式呈现,总结了文献中的实验和计算证据,并纳入了 BAX 和 SMAC 与半胱天冬酶系统成分相互作用的生化机制。通过模拟和分支分析,我们发现 BAX 和 SMAC 都调节凋亡开关的时滞和激活阈值。有趣的是,该模型预测 BAX(而非 SMAC)控制凋亡开关的幅度。使用 siRNA 介导的 BAX 和 SMAC 敲低的细胞培养实验验证了该模型预测。我们进一步使用 NCI-60 细胞系面板的数据验证了该模型,该模型将 BAX 蛋白表达作为细胞系特异性参数,表明模型模拟与细胞对 DNA 损伤药物的反应相关,并建立了区分敏感和耐药黑素瘤细胞的 caspase 激活的明确阈值。总之,我们提出了一个经过实验验证的动态模型,总结了我们目前对 BAX 和 SMAC 如何调节凋亡过程中不可逆半胱天冬酶激活的双稳态特性的认识。