Rochester Institute of Technology, Chester F. Carlson Center for Imaging Science, Rochester, NY, 14623, USA.
Sci Rep. 2021 Feb 8;11(1):3270. doi: 10.1038/s41598-021-82783-3.
The advent of remote sensing from unmanned aerial systems (UAS) has opened the door to more affordable and effective methods of imaging and mapping of surface geophysical properties with many important applications in areas such as coastal zone management, ecology, agriculture, and defense. We describe a study to validate and improve soil moisture content retrieval and mapping from hyperspectral imagery collected by a UAS system. Our approach uses a recently developed model known as the multilayer radiative transfer model of soil reflectance (MARMIT). MARMIT partitions contributions due to water and the sediment surface into equivalent but separate layers and describes these layers using an equivalent slab model formalism. The model water layer thickness along with the fraction of wet surface become parameters that must be optimized in a calibration step, with extinction due to water absorption being applied in the model based on equivalent water layer thickness, while transmission and reflection coefficients follow the Fresnel formalism. In this work, we evaluate the model in both field settings, using UAS hyperspectral imagery, and laboratory settings, using hyperspectral spectra obtained with a goniometer. Sediment samples obtained from four different field sites representing disparate environmental settings comprised the laboratory analysis while field validation used hyperspectral UAS imagery and coordinated ground truth obtained on a barrier island shore during field campaigns in 2018 and 2019. Analysis of the most significant wavelengths for retrieval indicate a number of different wavelengths in the short-wave infra-red (SWIR) that provide accurate fits to measured soil moisture content in the laboratory with normalized root mean square error (NRMSE)< 0.145, while independent evaluation from sequestered test data from the hyperspectral UAS imagery obtained during the field campaign obtained an average NRMSE = 0.169 and median NRMSE = 0.152 in a bootstrap analysis.
无人航空系统(UAS)遥感的出现为表面地球物理特性的成像和制图提供了更经济实惠、更有效的方法,在沿海管理、生态学、农业和国防等领域具有许多重要的应用。我们描述了一项验证和改进从 UAS 系统采集的高光谱图像中土壤湿度含量反演和制图的研究。我们的方法使用了一种最近开发的模型,称为土壤反射率多层辐射传输模型(MARMIT)。MARMIT 将水和沉积物表面的贡献划分为等效但独立的层,并使用等效平板模型形式描述这些层。模型水层厚度以及湿表面的分数是校准步骤中必须优化的参数,模型基于等效水层厚度应用水吸收的消光,而透射和反射系数遵循菲涅耳形式。在这项工作中,我们在使用 UAS 高光谱图像的野外环境和使用测角仪获得的高光谱光谱的实验室环境中评估了该模型。实验室分析使用来自四个不同环境设置的代表性沉积物样本,而野外验证则使用 2018 年和 2019 年野外考察期间在障碍岛海岸获取的高光谱 UAS 图像和协调的地面实况。对最显著的反演波长的分析表明,在短波红外(SWIR)中有多个不同的波长可以提供准确的土壤湿度拟合,实验室中归一化均方根误差(NRMSE)<0.145,而从野外考察中获取的高光谱 UAS 图像中分离出的测试数据进行独立评估,在 bootstrap 分析中平均 NRMSE = 0.169,中位数 NRMSE = 0.152。