Damgaard David, Ferro Livia, Łukowski Tomasz, Moerman Robert
Arnold-Sommerfeld-Center for Theoretical Physics, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 München, Germany.
Department of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB U.K.
J High Energy Phys. 2021;2021(2):41. doi: 10.1007/JHEP02(2021)041. Epub 2021 Feb 3.
In this paper we study a relation between two positive geometries: the momen- tum amplituhedron, relevant for tree-level scattering amplitudes in = 4 super Yang-Mills theory, and the kinematic associahedron, encoding tree-level amplitudes in bi-adjoint scalar theory. We study the implications of restricting the latter to four spacetime dimensions and give a direct link between its canonical form and the canonical form for the momentum amplituhedron. After removing the little group scaling dependence of the gauge theory, we find that we can compare the resulting reduced forms with the pull-back of the associahedron form. In particular, the associahedron form is the sum over all helicity sectors of the reduced momentum amplituhedron forms. This relation highlights the common sin- gularity structure of the respective amplitudes; in particular, the factorization channels, corresponding to vanishing planar Mandelstam variables, are the same. Additionally, we also find a relation between these canonical forms directly on the kinematic space of the scalar theory when reduced to four spacetime dimensions by Gram determinant constraints. As a by-product of our work we provide a detailed analysis of the kinematic spaces relevant for the four-dimensional gauge and scalar theories, and provide direct links between them.
在本文中,我们研究了两种正几何之间的关系:与四维超杨-米尔斯理论中的树图散射振幅相关的动量放大正多面体,以及编码双伴随标量理论中树图振幅的运动学关联正多面体。我们研究了将后者限制在四个时空维度的影响,并给出了其典范形式与动量放大正多面体典范形式之间的直接联系。在消除规范理论的小群标度依赖性之后,我们发现可以将得到的简化形式与关联正多面体形式的拉回进行比较。特别地,关联正多面体形式是简化后的动量放大正多面体形式在所有螺旋度扇区上的求和。这种关系突出了各自振幅的共同奇异结构;特别是,对应于平面曼德尔斯坦变量为零的因式分解通道是相同的。此外,当通过格拉姆行列式约束将其简化到四个时空维度时,我们还在标量理论的运动学空间上直接找到了这些典范形式之间的关系。作为我们工作的一个副产品,我们对与四维规范和标量理论相关的运动学空间进行了详细分析,并给出了它们之间的直接联系。