Laboratory of Molecular Biochemistry, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan.
Faculty of Pharmacy, Osaka Ohtani University, 3-11-1, Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan.
J Biosci Bioeng. 2021 May;131(5):483-490. doi: 10.1016/j.jbiosc.2021.01.003. Epub 2021 Feb 6.
Pyridoxal-5'-phosphate-dependent cysteine synthases synthesize l-cysteine from their primary substrates, O-acetyl-l-serine (OAS) and O-phospho-l-serine (OPS), and their secondary substrate, sulfide. The mechanism by which cysteine synthases recognize OPS remains unclear; hence, we investigated the OPS recognition mechanism of the OPS sulfhydrylase obtained from Aeropyrum pernix K1 (ApOPSS) and the OAS sulfhydrylase-B obtained from Escherichia coli (EcOASS-B), using protein engineering methods. From the amino acid sequence alignment data, we found that some OPS sulfhydrylases (OPSSs) had a Tyr corresponding to the Phe225 and Phe141 residues in ApOPSS and EcOASS-B, respectively, and that the Tyr residue could facilitate OPS recognition. The enzymatic activity of the ApOPSS F225Y mutant toward OPS decreased compared with that of the wild-type; the k value decreased 2.3-fold during cysteine synthesis. X-ray crystallography results of the complex of ApOPSS F225Y and F225Y/R297A mutants bound to OPS and l-cysteine showed that k might have decreased because of the stronger interactions of the reaction product phosphate with Tyr225, Thr203, and Arg297, and that of the l-cysteine with Tyr225. The specific activity of the EcOASS-B F141Y mutant toward OPS increased by 50-fold compared with that of the wild-type. Thus, a Tyr within a cysteine synthase corresponding to the Phe225 in ApOPSS and Phe141 in EcOASS-B could act as a key residue for classifying an unknown cysteine synthase as an OPSS. The elucidation of the substrate recognition system of cysteine synthases would enable us to effectively classify cysteine synthases and develop pathogen-specific drug targets, as OPSS is absent in mammalian hosts.
依赖吡哆醛-5'-磷酸的半胱氨酸合酶由其主要底物 O-乙酰-l-丝氨酸 (OAS) 和 O-磷酸-l-丝氨酸 (OPS) 以及其二级底物硫化物合成 l-半胱氨酸。半胱氨酸合酶识别 OPS 的机制尚不清楚;因此,我们使用蛋白质工程方法研究了来自 Aeropyrum pernix K1(ApOPSS)的 OPS 巯基酶和来自 Escherichia coli(EcOASS-B)的 OAS 巯基酶-B 的 OPS 识别机制。从氨基酸序列比对数据中,我们发现一些 OPS 巯基酶 (OPSS) 中的 Tyr 对应于 ApOPSS 和 EcOASS-B 中的 Phe225 和 Phe141 残基,并且 Tyr 残基可以促进 OPS 的识别。与野生型相比,ApOPSS F225Y 突变体对半胱氨酸的 OPS 酶活性降低;在半胱氨酸合成过程中,k 值降低了 2.3 倍。ApOPSS F225Y 和 F225Y/R297A 突变体与 OPS 和 l-半胱氨酸结合的复合物的 X 射线晶体结构表明,k 值可能降低是因为反应产物磷酸盐与 Tyr225、Thr203 和 Arg297 的相互作用以及 l-半胱氨酸与 Tyr225 的相互作用更强。与野生型相比,EcOASS-B F141Y 突变体对半胱氨酸的 OPS 的比活增加了 50 倍。因此,ApOPSS 中的 Phe225 和 EcOASS-B 中的 Phe141 相对应的半胱氨酸合酶中的 Tyr 可以作为将未知半胱氨酸合酶分类为 OPSS 的关键残基。对半胱氨酸合酶底物识别系统的阐明将使我们能够有效地对半胱氨酸合酶进行分类,并开发针对病原体的药物靶点,因为 OPSS 在哺乳动物宿主中不存在。