Department of Bioengineering, Rice University, Houston, TX, USA.
Department of BioSciences, Rice University, Houston, TX, USA.
Nat Commun. 2021 Feb 9;12(1):896. doi: 10.1038/s41467-021-21188-2.
Histone phosphorylation is a ubiquitous post-translational modification that allows eukaryotic cells to rapidly respond to environmental stimuli. Despite correlative evidence linking histone phosphorylation to changes in gene expression, establishing the causal role of this key epigenomic modification at diverse loci within native chromatin has been hampered by a lack of technologies enabling robust, locus-specific deposition of endogenous histone phosphorylation. To address this technological gap, here we build a programmable chromatin kinase, called dCas9-dMSK1, by directly fusing nuclease-null CRISPR/Cas9 to a hyperactive, truncated variant of the human MSK1 histone kinase. Targeting dCas9-dMSK1 to human promoters results in increased target histone phosphorylation and gene activation and demonstrates that hyperphosphorylation of histone H3 serine 28 (H3S28ph) in particular plays a causal role in the transactivation of human promoters. In addition, we uncover mediators of resistance to the BRAF V600E inhibitor PLX-4720 in human melanoma cells using genome-scale screening with dCas9-dMSK1. Collectively, our findings enable a facile way to reshape human chromatin using CRISPR/Cas9-based epigenome editing and further define the causal link between histone phosphorylation and human gene activation.
组蛋白磷酸化是一种普遍存在的翻译后修饰,使真核细胞能够快速响应环境刺激。尽管有相关证据表明组蛋白磷酸化与基因表达的变化有关,但由于缺乏能够在天然染色质中实现内源性组蛋白磷酸化的稳健、特异性定位沉积的技术,因此很难确定这种关键的表观遗传修饰在不同基因座上的因果作用。为了解决这一技术差距,我们通过直接将核酸酶缺失的 CRISPR/Cas9 与人类 MSK1 组蛋白激酶的高活性截断变体融合,构建了一种可编程染色质激酶,称为 dCas9-dMSK1。将 dCas9-dMSK1 靶向人类启动子会导致靶标组蛋白磷酸化和基因激活增加,并证明组蛋白 H3 丝氨酸 28(H3S28ph)的过度磷酸化在人类启动子的转录激活中起着因果作用。此外,我们使用 dCas9-dMSK1 进行全基因组筛选,在人类黑色素瘤细胞中发现了对 BRAF V600E 抑制剂 PLX-4720 耐药的介质。总的来说,我们的发现为使用基于 CRISPR/Cas9 的表观基因组编辑重塑人类染色质提供了一种简便的方法,并进一步确定了组蛋白磷酸化与人类基因激活之间的因果关系。