Modak Arindam, Mohan Roopathy, Rajavelu Kalaiyarasi, Cahan Rivka, Bendikov Tatyana, Schechter Alex
Department of Chemical Sciences, Ariel University, Ariel 40700, Israel.
Department of Chemical Engineering, Ariel University, Ariel 40700, Israel.
ACS Appl Mater Interfaces. 2021 Feb 24;13(7):8461-8473. doi: 10.1021/acsami.0c22148. Epub 2021 Feb 10.
The electrochemical urea oxidation reaction (UOR) is considered as a promising renewable source for harvesting energy from waste. We report a new synthetic design approach to produce an iron-nickel alloy nanocatalyst from a metal-organic polymer (MOP) by a single-step carbonization process at 500 °C, thus forming a core-shell of iron-nickel-coated carbon (C@FeNi) nanostructures wired by embedded carbon nanotubes (CNTs) (CNT/C@FeNi). Powder X-ray diffraction confirmed the formation of metallic FeNi alloy nanoparticles (∼20 to 28 nm). Our experimental results showed that MOP containing CNTs acquired an interconnected hierarchical topology, which prevented the collapse of its microstructure during pyrolysis. Hence, CNT/C@FeNi shows higher porosity (10 times) than C@FeNi. The electrochemical UOR in alkaline electrolytes on these catalysts was studied using cyclic voltammetry (CV). The result showed a higher anodic current (3.5 mA cm) for CNT/C@FeNi than for C@FeNi (1.1 mA cm) at 1.5 V/RHE. CNT/C@FeNi displayed good stability in chronoamperometry experiments and a lower Tafel slope (33 mV dec) than C@FeNi (41.1 mV dec). In this study, CNT/C@FeNi exhibits higher exchange current density (3.2 μA cm) than does C@FeNi (2 μA cm). The reaction rate orders of CNT/C@FeNi and C@FeNi at a kinetically controlled potential of 1.4 V/RHE were 0.5 and 0.9, respectively, higher than the 0.26 of β-Ni(OH), Ni/Ni(OH) electrodes. The electrochemical impedance result showed a lower charge-transfer resistance for CNT/C@FeNi (61 Ω·cm) than for C@FeNi (162 Ω·cm), due to faster oxidation kinetics associated with the CNT linkage. Moreover, CNT/C@FeNi exhibited a lower Tafel slope and resistance and higher heterogeneity (25.2 × 10 cm s), as well as relatively high faradic efficiency (68.4%) compared to C@FeNi (56%). Thus, the carbon-coated FeNi core connected by CNT facilitates lower charge-transfer resistance and reduces the UOR overpotential.
电化学尿素氧化反应(UOR)被认为是一种从废物中获取能量的有前景的可再生能源。我们报道了一种新的合成设计方法,通过在500°C下的一步碳化过程,由金属有机聚合物(MOP)制备铁镍合金纳米催化剂,从而形成由嵌入的碳纳米管(CNT)连接的铁镍包覆碳(C@FeNi)纳米结构的核壳结构(CNT/C@FeNi)。粉末X射线衍射证实了金属FeNi合金纳米颗粒(约20至28nm)的形成。我们的实验结果表明,含有CNT的MOP获得了相互连接的分级拓扑结构,这防止了其微观结构在热解过程中坍塌。因此,CNT/C@FeNi的孔隙率比C@FeNi高10倍。使用循环伏安法(CV)研究了这些催化剂在碱性电解质中的电化学UOR。结果表明,在1.5V/RHE下,CNT/C@FeNi的阳极电流(3.5mA/cm)高于C@FeNi(1.1mA/cm)。CNT/C@FeNi在计时电流实验中表现出良好的稳定性,并且塔菲尔斜率(33mV/dec)低于C@FeNi(41.1mV/dec)。在本研究中,CNT/C@FeNi表现出比C@FeNi(2μA/cm)更高的交换电流密度(3.2μA/cm)。在1.4V/RHE的动力学控制电位下,CNT/C@FeNi和C@FeNi的反应速率级数分别为0.5和0.9,高于β-Ni(OH)2/Ni/Ni(OH)电极的0.26。电化学阻抗结果表明,由于与CNT连接相关的更快氧化动力学,CNT/C@FeNi的电荷转移电阻(61Ω·cm)低于C@FeNi(162Ω·cm)。此外,与C@FeNi(56%)相比,CNT/C@FeNi表现出更低的塔菲尔斜率和电阻以及更高的异质性(25.2×10-6cm2/s),以及相对较高的法拉第效率(68.4%)。因此,由CNT连接的碳包覆FeNi核促进了更低的电荷转移电阻并降低了UOR过电位。