Suppr超能文献

Expiratory flow limitation in dogs with regional changes in lung mechanical properties.

作者信息

Mink S N, Greville H, Gomez A, Eng J

机构信息

Respiratory Investigation Unit F-2 General Centre, University of Manitoba, Winnipeg, Canada.

出版信息

J Appl Physiol (1985). 1988 Jan;64(1):162-73. doi: 10.1152/jappl.1988.64.1.162.

Abstract

We examined maximum expiratory flow (Vmax) in two canine preparations in which regional changes in lung mechanical properties were produced. In one experiment serial bronchial obstructions were made to determine whether flow-limiting sites (choke points, CP) would occur in series. With the right lung tied off, constrictions were placed at the left lower lobar bronchus (LLL) and left main-stem bronchus. On deflation from total lung capacity, the obstructed LLL and nonobstructed left upper lobe (LUL) emptied into the obstructed left main-stem bronchus. Although a CP common to both lobes was identified at the main-stem obstruction, which limited total Vmax, we questioned whether there was also a CP at the lobar obstruction that fixed LLL flow. In that case the rate of LLL emptying would not be dependent on the presence of the common (i.e., central) CP and thus the flow contribution of the LUL. We found that when the LUL was removed, the LLL increased its rate of emptying. Thus a lobar CP did not fix LLL flow and CP did not occur in series. In a second experiment emphysema was produced in the left lung to reduce lung recoil, whereas the right lung was normal. CP were identified at approximately lobar bronchi of each lung, and the lungs were emptied at different rates. A CP common to both lungs was not identified. Our results indicate that in localized lung disease, if flows from the different regions are high enough, then wave speed is reached in proximal airways, and a CP occurs centrally rather than peripherally. On the other hand, if flows are low, then wave speed is reached peripherally and a CP common to all lung regions does not occur.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验