Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
Department of Biology, University of Texas, Tyler, TX, USA.
Mol Ecol Resour. 2021 Nov;21(8):2801-2817. doi: 10.1111/1755-0998.13350. Epub 2021 Mar 6.
Model-based approaches that attempt to delimit species are hampered by computational limitations as well as the unfortunate tendency by users to disregard algorithmic assumptions. Alternatives are clearly needed, and machine-learning (M-L) is attractive in this regard as it functions without the need to explicitly define a species concept. Unfortunately, its performance will vary according to which (of several) bioinformatic parameters are invoked. Herein, we gauge the effectiveness of M-L-based species-delimitation algorithms by parsing 64 variably-filtered versions of a ddRAD-derived SNP data set collected from North American box turtles (Terrapene spp.). Our filtering strategies included: (i) minor allele frequencies (MAF) of 5%, 3%, 1%, and 0% (= none), and (ii) maximum missing data per-individual/per-population at 25%, 50%, 75%, and 100% (= no filtering). We found that species-delimitation via unsupervised M-L impacted the signal-to-noise ratio in our data, as well as the discordance among resolved clades. The latter may also reflect biogeographic history, gene flow, incomplete lineage sorting, or combinations thereof (as corroborated from previously observed patterns of differential introgression). Our results substantiate M-L as a viable species-delimitation method, but also demonstrate how commonly observed patterns of phylogenetic discordance can seriously impact M-L-classification.
基于模型的方法试图对物种进行界定,但受到计算限制以及用户忽视算法假设的不幸趋势的阻碍。显然需要替代方法,而机器学习 (M-L) 在这方面很有吸引力,因为它无需明确定义物种概念即可运行。不幸的是,其性能将根据调用的(多个)生物信息学参数而有所不同。在此,我们通过解析北美箱龟(Terrapene spp.)的 ddRAD 衍生 SNP 数据集的 64 个可变过滤版本来评估基于 M-L 的物种界定算法的有效性。我们的过滤策略包括:(i)次要等位基因频率 (MAF) 为 5%、3%、1% 和 0%(=无),以及(ii)每个个体/每个种群的最大缺失数据为 25%、50%、75%和 100%(=无过滤)。我们发现,通过无监督 M-L 进行物种界定会影响我们数据中的信噪比,以及解决的分支之间的不和谐。后者也可能反映生物地理历史、基因流、不完全谱系分选或它们的组合(从先前观察到的差异渐渗模式得到证实)。我们的结果证实了 M-L 作为一种可行的物种界定方法,但也表明了常见的系统发育不和谐模式如何严重影响 M-L 分类。