Suppr超能文献

一种用于客观评估腭裂儿童过度鼻音的深度学习算法。

A Deep Learning Algorithm for Objective Assessment of Hypernasality in Children With Cleft Palate.

出版信息

IEEE Trans Biomed Eng. 2021 Oct;68(10):2986-2996. doi: 10.1109/TBME.2021.3058424. Epub 2021 Sep 20.

Abstract

OBJECTIVES

Evaluation of hypernasality requires extensive perceptual training by clinicians and extending this training on a large scale internationally is untenable; this compounds the health disparities that already exist among children with cleft. In this work, we present the objective hypernasality measure (OHM), a speech-based algorithm that automatically measures hypernasality in speech, and validate it relative to a group of trained clinicians.

METHODS

We trained a deep neural network (DNN) on approximately 100 hours of a publicly-available healthy speech corpus to detect the presence of nasal acoustic cues generated through the production of nasal consonants and nasalized phonemes in speech. Importantly, this model does not require any clinical data for training. The posterior probabilities of the deep learning model were aggregated at the sentence and speaker-levels to compute the OHM.

RESULTS

The results showed that the OHM was significantly correlated with perceptual hypernasality ratings from the Americleft database (r = 0.797, p < 0.001) and the New Mexico Cleft Palate Center (NMCPC) database (r = 0.713, p < 0.001). In addition, we evaluated the relationship between the OHM and articulation errors; the sensitivity of the OHM in detecting the presence of very mild hypernasality; and established the internal reliability of the metric. Further, the performance of the OHM was compared with a DNN regression algorithm directly trained on the hypernasal speech samples.

SIGNIFICANCE

The results indicate that the OHM is able to measure the severity of hypernasality on par with Americleft-trained clinicians on thisdataset.

摘要

目的

评估超鼻音需要临床医生进行广泛的感知训练,而在国际上大规模扩展这种训练是不可行的;这加剧了已经存在于裂唇儿童中的健康差距。在这项工作中,我们提出了客观超鼻音度量(OHM),这是一种基于语音的算法,可自动测量语音中的超鼻音,并将其与一组经过训练的临床医生进行验证。

方法

我们使用大约 100 小时的公开健康语音语料库对深度神经网络(DNN)进行训练,以检测通过语音产生鼻腔辅音和鼻音化音素产生的鼻腔声学线索的存在。重要的是,这个模型不需要任何临床数据进行训练。深度学习模型的后验概率在句子和说话者级别上进行聚合,以计算 OHM。

结果

结果表明,OHM 与 Americleft 数据库(r = 0.797,p < 0.001)和新墨西哥腭裂中心(NMCPC)数据库(r = 0.713,p < 0.001)的感知超鼻音评分显著相关。此外,我们评估了 OHM 与发音错误之间的关系;OHM 检测非常轻微超鼻音的灵敏度;并建立了该指标的内部可靠性。此外,还比较了 OHM 的性能与直接在超鼻音语音样本上训练的 DNN 回归算法。

意义

结果表明,OHM 能够在这个数据集上与经过 Americleft 训练的临床医生一样,衡量超鼻音的严重程度。

相似文献

5
Hypernasality in singing among children with cleft palate: a preliminary study.腭裂儿童歌唱中的超鼻音:一项初步研究。
Int J Oral Maxillofac Surg. 2019 Oct;48(10):1317-1322. doi: 10.1016/j.ijom.2019.03.896. Epub 2019 Apr 20.

本文引用的文献

2
OBJECTIVE MEASURES OF PLOSIVE NASALIZATION IN HYPERNASAL SPEECH.高鼻音语音中爆破音鼻音化的客观测量
Proc IEEE Int Conf Acoust Speech Signal Process. 2019 May;2019:6520-6524. doi: 10.1109/ICASSP.2019.8682339. Epub 2019 Apr 17.
10
The Americleft Speech Project: A Training and Reliability Study.美国腭裂语音项目:一项培训与信度研究。
Cleft Palate Craniofac J. 2016 Jan;53(1):93-108. doi: 10.1597/14-027. Epub 2014 Dec 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验