Suppr超能文献

蛙科(蛙属)和负子蟾科(非洲爪蟾属)蝌蚪尾脊髓的形态学

Morphology of the caudal spinal cord in Rana (Ranidae) and Xenopus (Pipidae) tadpoles.

作者信息

Nishikawa K, Wassersug R

机构信息

Museum of Vertebrate Zoology, University of California, Berkeley 94720.

出版信息

J Comp Neurol. 1988 Mar 8;269(2):193-202. doi: 10.1002/cne.902690204.

Abstract

Using a variety of neuroanatomical and histological techniques, we compare the spinal cord and peripheral nerve distribution in the tails of larvae from Xenopus laevis and three species of Rana. The relatively large, postsacral spinal cord of Xenopus contains abundant motoneurons and their axons. Spinal nerves exit from the spinal cord in a regular array, one nerve per myotome, from the cervical region to near the end of the tail. Somata of motoneurons innervating caudal myotomes are found along the entire length of the tail. In contrast, the caudal cord of Rana is reduced to a filum terminale consisting of little more than an ependymal tube; spinal nerves to all caudal myotomes leave the cord in the sacral region and reach their motor targets via a cauda equina and caudal plexus. Motoneuron cell bodies innervating caudal myotomes are found only in the sacral region. The Rana larval pattern is similar to that of adult frogs and mammals, whereas the Xenopus larval pattern is more like that of salamanders and reptiles. These gross neuroanatomical differences are not due to differences in the size or developmental stage of the tadpoles, but instead are associated with differences in the swimming behavior of the larvae. The presence of motoneurons in the caudal spinal cord of Xenopus may provide local intermyotomal control within the tail; the elongated topography of the cord appears to permit finer, rostral-to-caudal regulation of neuromuscular activity. The Rana spinal cord, on the other hand--with motoneurons clustered anteriorly--may produce concurrent firing of adjacent ipsilateral myotomes, but at the expense of fine intermyotomal regulation. The fact that nerves in the tail of Xenopus enter and exit from the spinal cord locally, as opposed to far anteriorly as in Rana, means that for tadpoles of the same size, reflex arc lengths are many times shorter in Xenopus.

摘要

我们运用多种神经解剖学和组织学技术,比较了非洲爪蟾和三种林蛙幼体尾部的脊髓及周围神经分布。非洲爪蟾相对较大的骶后脊髓含有丰富的运动神经元及其轴突。脊髓神经从脊髓以规则排列穿出,从颈部区域到尾端附近,每个肌节有一条神经。支配尾部肌节的运动神经元胞体沿尾部全长分布。相比之下,林蛙的尾髓缩减为终丝,主要由室管膜管构成;支配所有尾部肌节的脊髓神经在骶区离开脊髓,通过马尾和尾丛到达其运动靶点。支配尾部肌节的运动神经元胞体仅在骶区发现。林蛙幼体的模式与成年青蛙和哺乳动物相似,而非洲爪蟾幼体的模式更类似于蝾螈和爬行动物。这些明显的神经解剖学差异并非由于蝌蚪大小或发育阶段的不同,而是与幼体游泳行为的差异有关。非洲爪蟾尾髓中运动神经元的存在可能为尾部内的局部肌节间控制提供支持;脊髓的细长形态似乎允许对神经肌肉活动进行更精细的从头至尾的调节。另一方面,林蛙的脊髓——运动神经元聚集在前部——可能会使相邻同侧肌节同时放电,但代价是肌节间的精细调节。与林蛙不同,非洲爪蟾尾部的神经在脊髓局部进出,这意味着对于相同大小的蝌蚪,非洲爪蟾的反射弧长度要短很多倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验