Suppr超能文献

单变量和多变量QTL分析揭示了水稻离子组中矿质元素间的协方差。

Univariate and Multivariate QTL Analyses Reveal Covariance Among Mineral Elements in the Rice Ionome.

作者信息

Liu Huan, Long Su-Xian, Pinson Shannon R M, Tang Zhong, Guerinot Mary Lou, Salt David E, Zhao Fang-Jie, Huang Xin-Yuan

机构信息

State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.

USDA-ARS Dale Bumpers National Rice Research Center, Stuttgart, AR, United States.

出版信息

Front Genet. 2021 Jan 25;12:638555. doi: 10.3389/fgene.2021.638555. eCollection 2021.

Abstract

Rice provides more than one fifth of daily calories for half of the world's human population, and is a major dietary source of both essential mineral nutrients and toxic elements. Rice grains are generally poor in some essential nutrients but may contain unsafe levels of some toxic elements under certain conditions. Identification of quantitative trait loci (QTLs) controlling the concentrations of mineral nutrients and toxic trace metals (the ionome) in rice will facilitate development of nutritionally improved rice varieties. However, QTL analyses have traditionally considered each element separately without considering their interrelatedness. In this study, we performed principal component analysis (PCA) and multivariate QTL analyses to identify the genetic loci controlling the covariance among mineral elements in the rice ionome. We resequenced the whole genomes of a rice recombinant inbred line (RIL) population, and performed univariate and multivariate QTL analyses for the concentrations of 16 elements in grains, shoots and roots of the RIL population grown in different conditions. We identified a total of 167 unique elemental QTLs based on analyses of individual elemental concentrations as separate traits, 53 QTLs controlling covariance among elemental concentrations within a single environment/tissue (PC-QTLs), and 152 QTLs which determined covariation among elements across environments/tissues (aPC-QTLs). The candidate genes underlying the QTL clusters with elemental QTLs, PC-QTLs and aPC-QTLs co-localized were identified, including and . The identification of both elemental QTLs and PC QTLs will facilitate the cloning of underlying causal genes and the dissection of the complex regulation of the ionome in rice.

摘要

水稻为世界上一半的人口提供了超过五分之一的每日热量,并且是必需矿物质营养素和有毒元素的主要膳食来源。水稻籽粒通常在某些必需营养素方面含量较低,但在某些条件下可能含有不安全水平的某些有毒元素。鉴定控制水稻中矿物质营养素和有毒微量金属(离子组)浓度的数量性状位点(QTL)将有助于培育营养改良的水稻品种。然而,传统的QTL分析是分别考虑每个元素,而没有考虑它们之间的相互关系。在本研究中,我们进行了主成分分析(PCA)和多变量QTL分析,以鉴定控制水稻离子组中矿质元素间协方差的遗传位点。我们对一个水稻重组自交系(RIL)群体的全基因组进行了重测序,并对在不同条件下生长的RIL群体的籽粒、地上部和根部中16种元素的浓度进行了单变量和多变量QTL分析。基于对单个元素浓度作为独立性状的分析,我们共鉴定出167个独特的元素QTL,53个控制单一环境/组织内元素浓度间协方差的QTL(PC-QTL),以及152个决定跨环境/组织元素间协变的QTL(aPC-QTL)。鉴定了元素QTL、PC-QTL和aPC-QTL共定位的QTL簇潜在的候选基因,包括和。元素QTL和PC QTL的鉴定将有助于克隆潜在的因果基因,并解析水稻离子组的复杂调控。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eef8/7868434/332a976206c1/fgene-12-638555-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验