Suppr超能文献

介绍一种利用机器学习、统计分析和Petri网建模来监测和控制油井健康状况及泵性能的软传感器。

Presenting a soft sensor for monitoring and controlling well health and pump performance using machine learning, statistical analysis, and Petri net modeling.

作者信息

Amini Mohammad Hossein, Arab Maliheh, Faramarz Mahdieh Ghiyasi, Ghazikhani Adel, Gheibi Mohammad

机构信息

Big Data Lab, Imam Reza International University, Mashhad, Iran.

Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.

出版信息

Environ Sci Pollut Res Int. 2021 Feb 10. doi: 10.1007/s11356-021-12643-0.

Abstract

Groundwater resources play a key role in supplying urban water demands in numerous societies. In many parts of the world, wells provide a reliable and sufficient source of water for domestic, irrigation, and industrial purposes. In recent decades, artificial intelligence (AI) and machine learning (ML) methods have attracted a considerable attention to develop Smart Control Systems for water management facilities. In this study, an attempt has been made to create a smart framework to monitor, control, and manage groundwater wells and pumps using a combination of ML algorithms and statistical analysis. In this research, 8 different learning methods and regressions namely support vector regression (SVR), extreme learning machine (ELM), classification and regression tree (CART), random forest (RF), artificial neural networks (ANNs), generalized regression neural network (GRNN), linear regression (LR), and K-nearest neighbors (KNN) regression algorithms have been applied to create a forecast model to predict water flow rate in Mashhad City wells. Moreover, several descriptive statistical metrics including mean squared error (MSE), root mean square error (RMSE), mean absolute error (MAE), and cross predicted accuracy (CPA) are calculated for these models to evaluate their performance. According to the results of this investigation, CART, RF, and LR algorithms have indicated the highest levels of precision with the lowest error values while SVM and MLP are the worst algorithms. In addition, sensitivity analysis has demonstrated that the LR and RF algorithms have produced the most accurate models for deep and shallow wells  respectively. Finally, a Petri net model has been presented to illustrate the conceptual model of the smart framework and alarm management system.

摘要

地下水资源在满足众多社会的城市用水需求方面发挥着关键作用。在世界许多地区,水井为家庭、灌溉和工业用途提供了可靠且充足的水源。近几十年来,人工智能(AI)和机器学习(ML)方法在开发水资源管理设施智能控制系统方面引起了相当大的关注。在本研究中,已尝试创建一个智能框架,使用ML算法和统计分析相结合的方式来监测、控制和管理地下水井及水泵。在这项研究中,应用了8种不同的学习方法和回归方法,即支持向量回归(SVR)、极限学习机(ELM)、分类与回归树(CART)、随机森林(RF)、人工神经网络(ANNs)、广义回归神经网络(GRNN)、线性回归(LR)和K近邻(KNN)回归算法,以创建一个预测模型来预测马什哈德市水井的水流速率。此外,还为这些模型计算了几个描述性统计指标,包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和交叉预测准确率(CPA),以评估它们的性能。根据这项调查的结果,CART、RF和LR算法显示出最高的精度水平,误差值最低,而SVM和MLP是最差的算法。此外,敏感性分析表明,LR和RF算法分别为深井和浅井生成了最准确的模型。最后,提出了一个Petri网模型来说明智能框架和报警管理系统的概念模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验