Suppr超能文献

利用芯片上产生的压力梯度减少进样偏差。

Reduction in sample injection bias using pressure gradients generated on chip.

作者信息

Liu Yukari, Xia Ling, Dutta Debashis

机构信息

Department of Chemistry, University of Wyoming, Laramie, WY, 82071, USA.

出版信息

Electrophoresis. 2021 Apr;42(7-8):983-990. doi: 10.1002/elps.202000299. Epub 2021 Feb 24.

Abstract

Sample injection in microchip-based capillary zone electrophoresis (CZE) frequently rely on the use of electric fields which can introduce differences in the injected volume for the various analytes depending on their electrophoretic mobilities and molecular diffusivities. While such injection biases may be minimized by employing hydrodynamic flows during the injection process, this approach typically requires excellent dynamic control over the pressure gradients applied within a microfluidic network. The current article describes a microchip device that offers this needed control by generating pressure gradients on-chip via electrokinetic means to minimize the dead volume in the system. In order to realize the desired pressure-generation capability, an electric field was applied across two channel segments of different depths to produce a mismatch in the electroosmotic flow rate at their junction. The resulting pressure-driven flow was then utilized to introduce sample zones into a CZE channel with minimal injection bias. The reported injection strategy allowed the introduction of narrow sample plugs with spatial standard deviations down to about 45 μm. This injection technique was later integrated to a capillary zone electrophoresis process for analyzing amino acid samples yielding separation resolutions of about 4-6 for the analyte peaks in a 3 cm long analysis channel.

摘要

基于微芯片的毛细管区带电泳(CZE)中的样品进样通常依赖于电场的使用,这可能会因各种分析物的电泳迁移率和分子扩散率而导致进样体积存在差异。虽然通过在进样过程中采用流体动力流可以将这种进样偏差降至最低,但这种方法通常需要对微流体网络内施加的压力梯度进行出色的动态控制。本文介绍了一种微芯片装置,该装置通过电动方式在芯片上产生压力梯度,以最小化系统中的死体积,从而提供所需的控制。为了实现所需的压力产生能力,在两个不同深度的通道段上施加电场,以在它们的交界处产生电渗流率的不匹配。然后利用由此产生的压力驱动流将样品区引入CZE通道,进样偏差最小。所报道的进样策略允许引入空间标准偏差低至约45μm的窄样品塞。这种进样技术后来被集成到毛细管区带电泳过程中,用于分析氨基酸样品,在3cm长的分析通道中,分析物峰的分离分辨率约为4-6。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验