Suppr超能文献

计算机分析表明,SARS-CoV-2 RBM 肽的 MHC-II 呈递效率较低:对中和抗体反应的影响。

In silico analysis suggests less effective MHC-II presentation of SARS-CoV-2 RBM peptides: Implication for neutralizing antibody responses.

机构信息

Biomedical Informatics Program, University of California San Diego, La Jolla, CA, United States of America.

Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America.

出版信息

PLoS One. 2021 Feb 11;16(2):e0246731. doi: 10.1371/journal.pone.0246731. eCollection 2021.

Abstract

SARS-CoV-2 antibodies develop within two weeks of infection, but wane relatively rapidly post-infection, raising concerns about whether antibody responses will provide protection upon re-exposure. Here we revisit T-B cooperation as a prerequisite for effective and durable neutralizing antibody responses centered on a mutationally constrained RBM B cell epitope. T-B cooperation requires co-processing of B and T cell epitopes by the same B cell and is subject to MHC-II restriction. We evaluated MHC-II constraints relevant to the neutralizing antibody response to a mutationally-constrained B cell epitope in the receptor binding motif (RBM) of the spike protein. Examining common MHC-II alleles, we found that peptides surrounding this key B cell epitope are predicted to bind poorly, suggesting a lack MHC-II support in T-B cooperation, impacting generation of high-potency neutralizing antibodies in the general population. Additionally, we found that multiple microbial peptides had potential for RBM cross-reactivity, supporting previous exposures as a possible source of T cell memory.

摘要

SARS-CoV-2 抗体在感染后两周内产生,但在感染后相对迅速衰减,这引发了人们对抗体反应在再次暴露时是否能提供保护的担忧。在这里,我们重新审视 T-B 合作作为以受突变限制的 RBM B 细胞表位为中心的有效和持久中和抗体反应的前提。T-B 合作需要同一 B 细胞共同加工 B 细胞和 T 细胞表位,并受到 MHC-II 限制。我们评估了与 Spike 蛋白受体结合基序 (RBM)中受突变限制的 B 细胞表位的中和抗体反应相关的 MHC-II 限制。检查常见的 MHC-II 等位基因,我们发现该关键 B 细胞表位周围的肽预测结合不良,表明 T-B 合作中缺乏 MHC-II 支持,这会影响一般人群中高效力中和抗体的产生。此外,我们发现多个微生物肽可能与 RBM 发生交叉反应,支持之前的暴露可能是 T 细胞记忆的一个来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c857/7877779/ffa4f705de5c/pone.0246731.g001.jpg

相似文献

2
MHC-II constrains the natural neutralizing antibody response to the SARS-CoV-2 spike RBM in humans.
bioRxiv. 2020 Dec 28:2020.12.26.424449. doi: 10.1101/2020.12.26.424449.
3
Landscape and selection of vaccine epitopes in SARS-CoV-2.
Genome Med. 2021 Jun 14;13(1):101. doi: 10.1186/s13073-021-00910-1.
4
Epitope-specific antibody responses differentiate COVID-19 outcomes and variants of concern.
JCI Insight. 2021 Jul 8;6(13):e148855. doi: 10.1172/jci.insight.148855.
5
Structural mechanism of SARS-CoV-2 neutralization by two murine antibodies targeting the RBD.
Cell Rep. 2021 Oct 26;37(4):109881. doi: 10.1016/j.celrep.2021.109881. Epub 2021 Oct 8.
7
Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies.
Nature. 2022 Feb;602(7898):657-663. doi: 10.1038/s41586-021-04385-3. Epub 2021 Dec 23.
8
T and B cell Epitope analysis of SARS-CoV-2 S protein based on immunoinformatics and experimental research.
J Cell Mol Med. 2021 Jan;25(2):1274-1289. doi: 10.1111/jcmm.16200. Epub 2020 Dec 15.
9
Epitope Classification and RBD Binding Properties of Neutralizing Antibodies Against SARS-CoV-2 Variants of Concern.
Front Immunol. 2021 Jun 4;12:691715. doi: 10.3389/fimmu.2021.691715. eCollection 2021.
10
Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike.
Nature. 2020 Aug;584(7821):450-456. doi: 10.1038/s41586-020-2571-7. Epub 2020 Jul 22.

引用本文的文献

1
Humoral Immune Response to SARS-CoV-2 Spike Protein Receptor-Binding Motif Linear Epitopes.
Vaccines (Basel). 2024 Mar 22;12(4):342. doi: 10.3390/vaccines12040342.
2
A unique antigen against SARS-CoV-2, Acinetobacter baumannii, and Pseudomonas aeruginosa.
Sci Rep. 2022 Jun 27;12(1):10852. doi: 10.1038/s41598-022-14877-5.
4
Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants.
PLoS Pathog. 2022 Feb 17;18(2):e1010260. doi: 10.1371/journal.ppat.1010260. eCollection 2022 Feb.

本文引用的文献

1
Reinfection with SARS-CoV-2 and Waning Humoral Immunity: A Case Report.
Vaccines (Basel). 2022 Dec 20;11(1):5. doi: 10.3390/vaccines11010005.
3
Genomic evidence for reinfection with SARS-CoV-2: a case study.
Lancet Infect Dis. 2021 Jan;21(1):52-58. doi: 10.1016/S1473-3099(20)30764-7. Epub 2020 Oct 12.
4
Cross-Sectional Evaluation of Humoral Responses against SARS-CoV-2 Spike.
Cell Rep Med. 2020 Oct 20;1(7):100126. doi: 10.1016/j.xcrm.2020.100126. Epub 2020 Sep 30.
5
Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity.
Cell. 2020 Nov 12;183(4):996-1012.e19. doi: 10.1016/j.cell.2020.09.038. Epub 2020 Sep 16.
7
Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms.
Science. 2020 Nov 20;370(6519):950-957. doi: 10.1126/science.abe3354. Epub 2020 Sep 24.
10
Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19.
Cell. 2020 Oct 1;183(1):143-157.e13. doi: 10.1016/j.cell.2020.08.025. Epub 2020 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验