Suppr超能文献

理想气体在小型球形吸附剂上的吸附

Adsorption of an Ideal Gas on a Small Spherical Adsorbent.

作者信息

Strøm Bjørn A, Bedeaux Dick, Schnell Sondre K

机构信息

Department of Materials Science and Engineering, Faculty of Natural Sciences, Norwegian University of Science and Technology, NTNU, NO-7491 Trondheim, Norway.

Porelab, Department of Chemistry, Norwegian University of Science and Technology, NTNU, NO-7491 Trondheim, Norway.

出版信息

Nanomaterials (Basel). 2021 Feb 9;11(2):431. doi: 10.3390/nano11020431.

Abstract

The ideal gas model is an important and useful model in classical thermodynamics. This remains so for small systems. Molecules in a gas can be adsorbed on the surface of a sphere. Both the free gas molecules and the adsorbed molecules may be modeled as ideal for low densities. The adsorption energy, Us, plays an important role in the analysis. For small adsorbents this energy depends on the curvature of the adsorbent. We model the adsorbent as a sphere with surface area Ω=4πR2, where is the radius of the sphere. We calculate the partition function for a grand canonical ensemble of two-dimensional adsorbed phases. When connected with the nanothermodynamic framework this gives us the relevant thermodynamic variables for the adsorbed phase controlled by the temperature , surface area Ω, and chemical potential μ. The dependence of intensive variables on size may then be systematically investigated starting from the simplest model, namely the ideal adsorbed phase. This dependence is a characteristic feature of small systems which is naturally expressed by the subdivision potential of nanothermodynamics. For surface problems, the nanothermodynamic approach is different, but equivalent to Gibbs' surface thermodynamics. It is however a general approach to the thermodynamics of small systems, and may therefore be applied to systems that do not have well defined surfaces. It is therefore desirable and useful to improve our basic understanding of nanothermodynamics.

摘要

理想气体模型是经典热力学中一个重要且有用的模型。对于小系统而言,情况依然如此。气体中的分子可以吸附在球体表面。对于低密度情况,自由气体分子和吸附分子都可以被建模为理想分子。吸附能(U_s)在分析中起着重要作用。对于小吸附剂,这种能量取决于吸附剂的曲率。我们将吸附剂建模为一个表面积(\Omega = 4\pi R^2)的球体,其中(R)是球体半径。我们计算二维吸附相的巨正则系综的配分函数。当与纳米热力学框架联系起来时,这为我们提供了由温度(T)、表面积(\Omega)和化学势(\mu)控制的吸附相的相关热力学变量。然后可以从最简单的模型,即理想吸附相开始,系统地研究强度变量对尺寸的依赖性。这种依赖性是小系统的一个特征,自然地由纳米热力学的细分势来表示。对于表面问题,纳米热力学方法不同,但等同于吉布斯表面热力学。然而,它是小系统热力学的一种通用方法,因此可以应用于没有明确表面的系统。因此,加深我们对纳米热力学的基本理解是可取且有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b62f/7915188/f6d651a99cf0/nanomaterials-11-00431-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验