Strøm Bjørn A, Simon Jean-Marc, Schnell Sondre K, Kjelstrup Signe, He Jianying, Bedeaux Dick
Department of Structural Engineering, Faculty of Engineering Science and Technology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.
Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne Franche-Comté, 9, av. Savary, 21000 Dijon, France.
Phys Chem Chem Phys. 2017 Mar 29;19(13):9016-9027. doi: 10.1039/c7cp00874k.
Small systems are known to deviate from the classical thermodynamic description, among other things due to their large surface area to volume ratio compared to corresponding big systems. As a consequence, extensive thermodynamic properties are no longer proportional to the volume, but are instead higher order functions of size and shape. We investigate such functions for second moments of probability distributions of fluctuating properties in the grand-canonical ensemble, focusing specifically on the volume and surface terms of Hadwiger's theorem, explained in Klain, Mathematika, 1995, 42, 329-339. We resolve the shape dependence of the surface term and show, using Hill's nanothermodynamics [Hill, J. Chem. Phys., 1962, 36, 3182], that the surface satisfies the thermodynamics of a flat surface as described by Gibbs [Gibbs, The Scientific Papers of J. Willard Gibbs, Volume 1, Thermodynamics, Ox Bow Press, Woodbridge, Connecticut, 1993]. The Small System Method (SSM), first derived by Schnell et al. [Schnell et al., J. Phys. Chem. B, 2011, 115, 10911], is extended and used to analyze simulation data on small systems of water. We simulate water as an example to illustrate the method, using TIP4P/2005 and other models, and compute the isothermal compressibility and thermodynamic factor. We are able to retrieve the experimental value of the bulk phase compressibility within 2%, and show that the compressibility of nanosized volumes increases by up to a factor of two as the number of molecules in the volume decreases. The value for a tetrahedron, cube, sphere, polygon, etc. can be predicted from the same scaling law, as long as second order effects (nook and corner effects) are negligible. Lastly, we propose a general formula for finite reservoir correction to fluctuations in subvolumes.
众所周知,小系统会偏离经典热力学描述,这尤其归因于与相应大系统相比,它们具有较大的表面积与体积比。因此,广延热力学性质不再与体积成正比,而是尺寸和形状的高阶函数。我们研究巨正则系综中涨落性质概率分布二阶矩的此类函数,特别关注克莱因在《数学学报》1995年第42卷第329 - 339页所解释的哈德维格定理的体积项和表面项。我们解析了表面项的形状依赖性,并利用希尔的纳米热力学(希尔,《化学物理杂志》,1962年,第36卷,第3182页)表明,表面满足吉布斯(吉布斯,《J. 威拉德·吉布斯科学论文集,第1卷,热力学》,牛弓出版社,康涅狄格州伍德布里奇,1993年)所描述的平面热力学。由施内尔等人首次推导得出的小系统方法(施内尔等人,《物理化学杂志B》,2011年,第115卷,第10911页)得到扩展,并用于分析水的小系统模拟数据。我们以水为例进行模拟来说明该方法,使用TIP4P/2005及其他模型,并计算等温压缩率和热力学因子。我们能够在2%的误差范围内得到体相压缩率的实验值,并表明随着体积内分子数减少,纳米级体积的压缩率增加高达两倍。只要二阶效应(边角效应)可忽略不计,对于四面体、立方体、球体、多边形等的数值可由相同的标度律预测。最后,我们提出了一个关于子体积涨落有限储库校正的通用公式。