Suppr超能文献

环磷酸腺苷可防止二氯芬酸诱导的原代大鼠肝细胞毒性:由环磷酸腺苷/环磷酸腺苷调节的鸟嘌呤核苷酸交换因子直接激活的交换蛋白介导的保护作用。

Elevated cAMP Protects against Diclofenac-Induced Toxicity in Primary Rat Hepatocytes: A Protective Effect Mediated by the Exchange Protein Directly Activated by cAMP/cAMP-Regulated Guanine Nucleotide Exchange Factors.

机构信息

Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.).

Dept. Gastroenterology and Hepatology (F.A.A.M., M.B.-H., H.M.), Dept. Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC (N.M., A.O., M.S.), Dept. Laboratory Medicine (M.B.-H., H.M.), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Inserm UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Univ Toulouse Paul Sabatier, Toulouse, France (F.L.); and Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, University of Texas Health Science Center at Houston, Houston, Texas (X.C.)

出版信息

Mol Pharmacol. 2021 Apr;99(4):294-307. doi: 10.1124/molpharm.120.000217. Epub 2021 Feb 11.

Abstract

Chronic consumption of the nonsteroidal anti-inflammatory drug diclofenac may induce drug-induced liver injury (DILI). The mechanism of diclofenac-induced liver injury is partially elucidated and involves mitochondrial damage. Elevated cAMP protects hepatocytes against bile acid-induced injury. However, it is unknown whether cAMP protects against DILI and, if so, which downstream targets of cAMP are implicated in the protective mechanism, including the classic protein kinase A (PKA) pathway or alternative pathways like the exchange protein directly activated by cAMP (EPAC). The aim of this study was to investigate whether cAMP and/or its downstream targets protect against diclofenac-induced injury in hepatocytes. Rat hepatocytes were exposed to 400 µmol/l diclofenac. Apoptosis and necrosis were measured by caspase-3 activity assay and Sytox green staining, respectively. Mitochondrial membrane potential (MMP) was measured by JC-10 staining. mRNA and protein expression were assessed by quantitative polymerase chain reaction (qPCR) and Western blot, respectively. The cAMP-elevating agent 7-acetoxy-8,13-epoxy-1,6,9-trihydroxylabd-14-en-11-one (forskolin), the pan-phosphodiesterase inhibitor IBMX, and EPAC inhibitors 5,7-dibromo-6-fluoro-3,4-dihydro-2-methyl-1(2H)-quinoline carboxaldehyde (CE3F4 and ESI-O5 were used to assess the role of cAMP and its effectors, PKA or EPAC. Diclofenac exposure induced apoptotic cell death and loss of MMP in hepatocytes. Both forskolin and IBMX prevented diclofenac-induced apoptosis. EPAC inhibition but not PKA inhibition abolished the protective effect of forskolin and IBMX. Forskolin and IBMX preserved the MMP, whereas both EPAC inhibitors diminished this effect. Both EPAC1 and EPAC2 were expressed in hepatocytes and localized in mitochondria. cAMP elevation protects hepatocytes against diclofenac-induced cell death, a process primarily involving EPACs. The cAMP/EPAC pathway may be a novel target for treatment of DILI. SIGNIFICANCE STATEMENT: This study shows two main highlights. First, elevated cAMP levels protect against diclofenac-induced apoptosis in primary hepatocytes via maintenance of mitochondrial integrity. In addition, this study proposes the existence of mitochondrial cAMP-EPAC microdomains in rat hepatocytes, opening new avenues for targeted therapy in drug-induced liver injury (DILI). Both EPAC1 and EPAC2, but not protein kinase A, are responsible for this protective effect. Our findings present cAMP-EPAC as a potential target for the treatment of DILI and liver injury involving mitochondrial dysfunction.

摘要

慢性使用非甾体类抗炎药双氯芬酸可能会导致药物性肝损伤(DILI)。双氯芬酸诱导肝损伤的机制部分阐明,涉及线粒体损伤。升高的 cAMP 可保护肝细胞免受胆汁酸诱导的损伤。然而,目前尚不清楚 cAMP 是否能预防 DILI,如果能,cAMP 的哪些下游靶点参与了保护机制,包括经典的蛋白激酶 A(PKA)途径或 EPAC 等替代途径。本研究旨在探讨 cAMP 及其下游靶点是否能预防肝细胞中双氯芬酸诱导的损伤。用 400μmol/L 的双氯芬酸处理大鼠肝细胞。通过 caspase-3 活性测定和 Sytox 绿染色分别测定细胞凋亡和坏死。通过 JC-10 染色测定线粒体膜电位(MMP)。通过定量聚合酶链反应(qPCR)和 Western blot 分别评估 mRNA 和蛋白质表达。用 cAMP 升高剂 7-乙酰氧基-8,13-环氧-1,6,9-三羟基-14-烯-11-酮(forskolin)、泛磷酸二酯酶抑制剂 IBMX 和 EPAC 抑制剂 5,7-二溴-6-氟-3,4-二氢-2-甲基-1(2H)-喹啉羧酸醛(CE3F4 和 ESI-O5 来评估 cAMP 及其效应物 PKA 或 EPAC 的作用。双氯芬酸暴露诱导肝细胞凋亡和 MMP 丧失。forskolin 和 IBMX 均可预防双氯芬酸诱导的细胞凋亡。EPAC 抑制而非 PKA 抑制消除了 forskolin 和 IBMX 的保护作用。forskolin 和 IBMX 可维持 MMP,而两种 EPAC 抑制剂均减弱了这一作用。EPAC1 和 EPAC2 均在肝细胞中表达并定位于线粒体。cAMP 升高可防止肝细胞发生双氯芬酸诱导的细胞死亡,这一过程主要涉及 EPAC。cAMP/EPAC 途径可能是治疗 DILI 的新靶点。本研究有两个主要发现。首先,升高的 cAMP 水平通过维持线粒体完整性来防止原代肝细胞中双氯芬酸诱导的细胞凋亡。此外,该研究提出了大鼠肝细胞中线粒体 cAMP-EPAC 微区的存在,为药物性肝损伤(DILI)的靶向治疗开辟了新途径。EPAC1 和 EPAC2 而非蛋白激酶 A 负责这种保护作用。我们的研究结果表明 cAMP-EPAC 可能成为治疗 DILI 和涉及线粒体功能障碍的肝损伤的潜在靶点。

相似文献

4
PDE4 inhibitor, roflumilast protects cardiomyocytes against NO-induced apoptosis via activation of PKA and Epac dual pathways.
Cell Signal. 2008 May;20(5):803-14. doi: 10.1016/j.cellsig.2007.12.011. Epub 2007 Dec 28.
5
EPAC1 and 2 inhibit K currents via PLC/PKC and NOS/PKG pathways in rat ventricular cardiomyocytes.
Am J Physiol Cell Physiol. 2024 Sep 1;327(3):C557-C570. doi: 10.1152/ajpcell.00582.2023. Epub 2024 Jul 10.
6
EPAC activation inhibits acetaldehyde-induced activation and proliferation of hepatic stellate cell via Rap1.
Can J Physiol Pharmacol. 2016 May;94(5):498-507. doi: 10.1139/cjpp-2015-0437. Epub 2015 Nov 19.
7
The (R)-enantiomer of CE3F4 is a preferential inhibitor of human exchange protein directly activated by cyclic AMP isoform 1 (Epac1).
Biochem Biophys Res Commun. 2013 Oct 25;440(3):443-8. doi: 10.1016/j.bbrc.2013.09.107. Epub 2013 Oct 4.
8
Novel Epac fluorescent ligand reveals distinct Epac1 vs. Epac2 distribution and function in cardiomyocytes.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3991-6. doi: 10.1073/pnas.1416163112. Epub 2015 Mar 17.

引用本文的文献

本文引用的文献

1
Nanodomains in cardiopulmonary disorders and the impact of air pollution.
Biochem Soc Trans. 2020 Jun 30;48(3):799-811. doi: 10.1042/BST20190250.
2
Phosphodiesterase 3A and Arterial Hypertension.
Circulation. 2020 Jul 14;142(2):133-149. doi: 10.1161/CIRCULATIONAHA.119.043061. Epub 2020 Jun 11.
3
Double agents of cell death: novel emerging functions of apoptotic regulators.
FEBS J. 2020 Jul;287(13):2647-2663. doi: 10.1111/febs.15308. Epub 2020 Apr 11.
4
Protective effect of metformin against palmitate-induced hepatic cell death.
Biochim Biophys Acta Mol Basis Dis. 2020 Mar 1;1866(3):165621. doi: 10.1016/j.bbadis.2019.165621. Epub 2019 Nov 29.
5
Alteration of mitochondrial DNA homeostasis in drug-induced liver injury.
Food Chem Toxicol. 2020 Jan;135:110916. doi: 10.1016/j.fct.2019.110916. Epub 2019 Oct 25.
7
Soluble adenylyl cyclase-mediated cAMP signaling and the putative role of PKA and EPAC in cerebral mitochondrial function.
J Neurosci Res. 2019 Aug;97(8):1018-1038. doi: 10.1002/jnr.24477. Epub 2019 Jun 6.
8
PDE2 regulates membrane potential, respiration and permeability transition of rodent subsarcolemmal cardiac mitochondria.
Mitochondrion. 2019 Jul;47:64-75. doi: 10.1016/j.mito.2019.05.002. Epub 2019 May 15.
10
Function of cAMP scaffolds in obstructive lung disease: Focus on epithelial-to-mesenchymal transition and oxidative stress.
Br J Pharmacol. 2019 Jul;176(14):2402-2415. doi: 10.1111/bph.14605. Epub 2019 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验