Suppr超能文献

Puma 和 Caspase9 介导的细胞凋亡对于 p53 驱动的神经嵴起源的发育缺陷是可有可无的。

Puma- and Caspase9-mediated apoptosis is dispensable for p53-driven neural crest-based developmental defects.

机构信息

Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA.

Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA.

出版信息

Cell Death Differ. 2021 Jul;28(7):2083-2094. doi: 10.1038/s41418-021-00738-7. Epub 2021 Feb 11.

Abstract

Inappropriate activation of the p53 transcription factor is thought to contribute to the developmental phenotypes in a range of genetic syndromes. Whether p53 activation drives these developmental phenotypes by triggering apoptosis, cell cycle arrest, or other p53 cellular responses, however, has remained elusive. As p53 hyperactivation in embryonic neural crest cells (NCCs) drives a number of phenotypes, including abnormal craniofacial and neuronal development, we investigate the basis for p53 action in this context. We show that p53-driven developmental defects are associated with the induction of a robust pro-apoptotic transcriptional signature. Intriguingly, however, deleting Puma or Caspase9, which encode key components of the intrinsic apoptotic pathway, does not rescue craniofacial, neuronal or pigmentation defects triggered by p53 hyperactivation in NCCs. Immunostaining analyses for two key apoptosis markers confirm that deleting Puma or Caspase9 does indeed impair p53-hyperactivation-induced apoptosis in NCCs. Furthermore, we demonstrate that p53 hyperactivation does not trigger a compensatory dampening of cell cycle progression in NCCs upon inactivation of apoptotic pathways. Together, our results indicate that p53-driven craniofacial, neuronal and pigmentation defects can arise in the absence of apoptosis and cell cycle arrest, suggesting that p53 hyperactivation can act via alternative pathways to trigger developmental phenotypes.

摘要

p53 转录因子的异常激活被认为是导致多种遗传综合征发育表型的原因。然而,p53 的激活是否通过触发细胞凋亡、细胞周期停滞或其他 p53 细胞反应来驱动这些发育表型,仍然难以捉摸。由于胚胎神经嵴细胞 (NCC) 中 p53 的过度激活会导致多种表型,包括异常的颅面和神经元发育,因此我们研究了 p53 在这种情况下发挥作用的基础。我们表明,p53 驱动的发育缺陷与诱导强烈的促凋亡转录特征有关。然而,有趣的是,删除编码内在凋亡途径关键成分的 Puma 或 Caspase9,并不能挽救 NCC 中 p53 过度激活引发的颅面、神经元或色素沉着缺陷。针对两个关键凋亡标志物的免疫染色分析证实,删除 Puma 或 Caspase9 确实会损害 NCC 中 p53 过度激活诱导的细胞凋亡。此外,我们证明,p53 过度激活不会在凋亡途径失活时触发 NCC 中细胞周期进程的代偿性抑制。总之,我们的结果表明,在没有细胞凋亡和细胞周期阻滞的情况下,p53 驱动的颅面、神经元和色素沉着缺陷也可能发生,这表明 p53 过度激活可以通过替代途径引发发育表型。

相似文献

1
Puma- and Caspase9-mediated apoptosis is dispensable for p53-driven neural crest-based developmental defects.
Cell Death Differ. 2021 Jul;28(7):2083-2094. doi: 10.1038/s41418-021-00738-7. Epub 2021 Feb 11.
2
The Spatiotemporal Pattern and Intensity of p53 Activation Dictates Phenotypic Diversity in p53-Driven Developmental Syndromes.
Dev Cell. 2019 Jul 22;50(2):212-228.e6. doi: 10.1016/j.devcel.2019.05.015. Epub 2019 Jun 6.
5
MiR-125b protects against ethanol-induced apoptosis in neural crest cells and mouse embryos by targeting Bak 1 and PUMA.
Exp Neurol. 2015 Sep;271:104-11. doi: 10.1016/j.expneurol.2015.04.026. Epub 2015 May 27.
6
Suppression of the intrinsic apoptosis pathway by synaptic activity.
J Neurosci. 2010 Feb 17;30(7):2623-35. doi: 10.1523/JNEUROSCI.5115-09.2010.
7
Teratogen-induced activation of p53 in early postimplantation mouse embryos.
Toxicol Sci. 2007 Jan;95(1):257-69. doi: 10.1093/toxsci/kfl143. Epub 2006 Oct 26.
9
mTOR acts as a pivotal signaling hub for neural crest cells during craniofacial development.
PLoS Genet. 2018 Jul 5;14(7):e1007491. doi: 10.1371/journal.pgen.1007491. eCollection 2018 Jul.
10
Inactivation of Cdc42 in neural crest cells causes craniofacial and cardiovascular morphogenesis defects.
Dev Biol. 2013 Nov 15;383(2):239-52. doi: 10.1016/j.ydbio.2013.09.013. Epub 2013 Sep 18.

引用本文的文献

1
Gliomedin drives gastric cancer cell proliferation and migration, correlating with a poor prognosis.
Heliyon. 2024 Sep 19;10(18):e38153. doi: 10.1016/j.heliyon.2024.e38153. eCollection 2024 Sep 30.
2
The lncRNA Gm8097 is associated with hypospermatogenesis.
Clin Exp Reprod Med. 2024 Dec;51(4):314-323. doi: 10.5653/cerm.2024.06835. Epub 2024 Jun 10.
3
Neuronal IL-17 controls developmental diapause through CEP-1/p53.
Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2315248121. doi: 10.1073/pnas.2315248121. Epub 2024 Mar 14.
5
Apoptotic cell death in disease-Current understanding of the NCCD 2023.
Cell Death Differ. 2023 May;30(5):1097-1154. doi: 10.1038/s41418-023-01153-w. Epub 2023 Apr 26.

本文引用的文献

2
The Spatiotemporal Pattern and Intensity of p53 Activation Dictates Phenotypic Diversity in p53-Driven Developmental Syndromes.
Dev Cell. 2019 Jul 22;50(2):212-228.e6. doi: 10.1016/j.devcel.2019.05.015. Epub 2019 Jun 6.
3
Loss of p53 Causes Stochastic Aberrant X-Chromosome Inactivation and Female-Specific Neural Tube Defects.
Cell Rep. 2019 Apr 9;27(2):442-454.e5. doi: 10.1016/j.celrep.2019.03.048.
4
Autophagic cell death restricts chromosomal instability during replicative crisis.
Nature. 2019 Jan;565(7741):659-663. doi: 10.1038/s41586-019-0885-0. Epub 2019 Jan 23.
5
The role of p53 in developmental syndromes.
J Mol Cell Biol. 2019 Mar 1;11(3):200-211. doi: 10.1093/jmcb/mjy087.
6
7
Embryogenesis and Adult Life in the Absence of Intrinsic Apoptosis Effectors BAX, BAK, and BOK.
Cell. 2018 May 17;173(5):1217-1230.e17. doi: 10.1016/j.cell.2018.04.036.
8
Necroptosis in development and diseases.
Genes Dev. 2018 Mar 1;32(5-6):327-340. doi: 10.1101/gad.312561.118.
9
How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?
Cell Death Differ. 2018 Jan;25(1):104-113. doi: 10.1038/cdd.2017.169. Epub 2017 Nov 17.
10
Deconstructing networks of p53-mediated tumor suppression in vivo.
Cell Death Differ. 2018 Jan;25(1):93-103. doi: 10.1038/cdd.2017.171. Epub 2017 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验