Nye Jessica, Mondal Mayukh, Bertranpetit Jaume, Laayouni Hafid
Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain.
NAR Genom Bioinform. 2020 Sep 3;2(3):lqaa061. doi: 10.1093/nargab/lqaa061. eCollection 2020 Sep.
After diverging, each chimpanzee subspecies has been the target of unique selective pressures. Here, we employ a machine learning approach to classify regions as under positive selection or neutrality genome-wide. The regions determined to be under selection reflect the unique demographic and adaptive history of each subspecies. The results indicate that effective population size is important for determining the proportion of the genome under positive selection. The chimpanzee subspecies share signals of selection in genes associated with immunity and gene regulation. With these results, we have created a selection map for each population that can be displayed in a genome browser (www.hsb.upf.edu/chimp_browser). This study is the first to use a detailed demographic history and machine learning to map selection genome-wide in chimpanzee. The chimpanzee selection map will improve our understanding of the impact of selection on closely related subspecies and will empower future studies of chimpanzee.
分化之后,每个黑猩猩亚种都成为了独特选择压力的目标。在这里,我们采用机器学习方法在全基因组范围内将区域分类为正选择或中性区域。被确定为处于选择状态的区域反映了每个亚种独特的种群统计学和适应性历史。结果表明,有效种群大小对于确定正选择下基因组的比例很重要。黑猩猩亚种在与免疫和基因调控相关的基因中共享选择信号。基于这些结果,我们为每个种群创建了一个可在基因组浏览器(www.hsb.upf.edu/chimp_browser)中显示的选择图谱。这项研究首次使用详细的种群历史和机器学习在黑猩猩中进行全基因组选择图谱绘制。黑猩猩选择图谱将增进我们对选择对密切相关亚种影响的理解,并为未来的黑猩猩研究提供助力。