Hagemann Cathleen, Tyzack Giulia E, Taha Doaa M, Devine Helen, Greensmith Linda, Newcombe Jia, Patani Rickie, Serio Andrea, Luisier Raphaëlle
The Francis Crick Institute, London, UK.
Centre for Craniofacial & Regenerative Biology, King's College London, London, UK.
Brain Pathol. 2021 Jul;31(4):e12937. doi: 10.1111/bpa.12937. Epub 2021 Feb 11.
Histopathological analysis of tissue sections is invaluable in neurodegeneration research. However, cell-to-cell variation in both the presence and severity of a given phenotype is a key limitation of this approach, reducing the signal to noise ratio and leaving unresolved the potential of single-cell scoring for a given disease attribute. Here, we tested different machine learning methods to analyse high-content microscopy measurements of hundreds of motor neurons (MNs) from amyotrophic lateral sclerosis (ALS) post-mortem tissue sections. Furthermore, we automated the identification of phenotypically distinct MN subpopulations in VCP- and SOD1-mutant transgenic mice, revealing common morphological cellular phenotypes. Additionally we established scoring metrics to rank cells and tissue samples for both disease probability and severity. By adapting this paradigm to human post-mortem tissue, we validated our core finding that morphological descriptors robustly discriminate ALS from control healthy tissue at single cell resolution. Determining disease presence, severity and unbiased phenotypes at single cell resolution might prove transformational in our understanding of ALS and neurodegeneration more broadly.
组织切片的组织病理学分析在神经退行性疾病研究中具有重要价值。然而,给定表型的存在和严重程度在细胞间存在差异,这是该方法的一个关键限制,降低了信噪比,并且给定疾病属性的单细胞评分潜力仍未得到解决。在这里,我们测试了不同的机器学习方法,以分析来自肌萎缩侧索硬化症(ALS)死后组织切片的数百个运动神经元(MN)的高内涵显微镜测量数据。此外,我们在VCP和SOD1突变转基因小鼠中实现了表型不同的MN亚群的自动识别,揭示了常见的形态学细胞表型。此外,我们建立了评分指标,对细胞和组织样本的疾病概率和严重程度进行排名。通过将这种模式应用于人类死后组织,我们验证了我们的核心发现,即形态学描述符在单细胞分辨率下能够可靠地区分ALS和对照健康组织。在单细胞分辨率下确定疾病的存在、严重程度和无偏表型,可能会在更广泛地理解ALS和神经退行性疾病方面带来变革。