Suppr超能文献

位错理论在最小化由纳米晶体构建块构建的人工固体中的缺陷方面的应用。

Application of Dislocation Theory to Minimize Defects in Artificial Solids Built with Nanocrystal Building Blocks.

作者信息

Ondry Justin C, Alivisatos A Paul

机构信息

Department of Chemistry, University of California, Berkeley, California 94720, United States.

Kavli Energy NanoScience Institute, Berkeley, California 94720, United States.

出版信息

Acc Chem Res. 2021 Mar 16;54(6):1419-1429. doi: 10.1021/acs.accounts.0c00719. Epub 2021 Feb 12.

Abstract

ConspectusOriented atomic attachment of colloidal inorganic nanocrystals represents a powerful synthetic method for preparing complex inorganic superstructures. Examples include fusion of nanocrystals into dimer and superlattice structures. If the attachment were perfect throughout, then the resulting materials would have single crystal-like alignment of the individual nanocrystals' atomic lattices. While individual colloidal nanocrystals typically are free of many defects, there are a multitude of pathways that can generate defects upon nanocrystal attachment. These attachment generated defects are typically undesirable, and thus developing strategies to favor defect-free attachment or heal defective interfaces are essential. There may also be some cases where attachment-derived defects are desirable. In this Account, we summarize our current understanding of how these defects arise, in order to offer guidance to those who are designing nanocrystal derived solids.The small size of inorganic nanocrystals means short diffusion lengths to the surface, which favor the formation of nanocrystal building blocks with pristine atomic structures. Upon attachment, however, there are numerous pathways that can lead to atomic scale defects, and bulk crystal dislocation theory provides an invaluable guide to understanding these phenomena. As an example, an atomic step edge can be incorporated into the interface leading to an extra half-plane of atoms, known as an edge dislocation. These dislocations can be well described by the Burgers vector description of dislocations, which geometrically identifies planes in which a dislocation can move. Our measurements have verified that bulk dislocation theory predictions for 1D defects hold true at few-nanometer length scales in PbTe and CdSe nanocrystal interfaces. Ultimately, the applicability of dislocation theory to nanocrystal attachment enables the predictive design of attachment to prevent or facilitate healing of defects upon nanocrystal attachment. We applied similar logic to understand formation of planar (2D) defects such as stacking faults upon nanocrystal attachment. Again concepts from bulk crystal defect crystallography can identify attachment pathways that can prevent or deterministically form planar defects upon nanocrystal attachment. The concepts we discuss work well for identifying favorable attachment geometries for nanocrystal ; however it is currently unclear how to translate these ideas to near-simultaneous multiparticle attachment. Geometric frustration, which prevents nanocrystal rotation, and yet-to-be considered defect generation pathways unique to multiparticle attachment complicate defect-free superlattice attachment. New imaging methods now allow for the direct observation of local attachment trajectories and may enable improved understanding of such multiparticle phenomena. With further refinement, a unified framework for understanding and ultimately eliminating structural defects in fused nanocrystal superstructures may well be achievable in coming years.

摘要

概述

胶体无机纳米晶体的定向原子附着是制备复杂无机超结构的一种强大合成方法。实例包括将纳米晶体融合成二聚体和超晶格结构。如果附着在整个过程中都是完美的,那么所得材料将具有单个纳米晶体原子晶格的单晶状排列。虽然单个胶体纳米晶体通常没有许多缺陷,但在纳米晶体附着时存在多种会产生缺陷的途径。这些附着产生的缺陷通常是不希望出现的,因此开发有利于无缺陷附着或修复有缺陷界面的策略至关重要。也可能存在一些情况,附着衍生的缺陷是可取的。在本综述中,我们总结了目前对这些缺陷如何产生的理解,以便为那些设计纳米晶体衍生固体的人提供指导。

无机纳米晶体的小尺寸意味着到表面的扩散长度短,这有利于形成具有原始原子结构的纳米晶体构建块。然而,在附着时,有许多途径会导致原子尺度的缺陷,体晶体位错理论为理解这些现象提供了宝贵的指导。例如,一个原子台阶边缘可以并入界面,导致额外的半个原子平面,称为边缘位错。这些位错可以用位错的伯格斯矢量描述很好地描述,它从几何上确定了位错可以移动的平面。我们的测量已经证实,体位错理论对一维缺陷的预测在PbTe和CdSe纳米晶体界面的几纳米长度尺度上是成立的。最终,位错理论在纳米晶体附着中的适用性使得能够对附着进行预测性设计,以防止或促进纳米晶体附着时缺陷的修复。我们应用类似的逻辑来理解纳米晶体附着时平面(二维)缺陷的形成,如堆垛层错。同样,体晶体缺陷晶体学的概念可以识别在纳米晶体附着时可以防止或确定性地形成平面缺陷的附着途径。我们讨论的概念在识别纳米晶体的有利附着几何形状方面效果很好;然而,目前尚不清楚如何将这些想法转化为近乎同时的多粒子附着。几何挫折会阻止纳米晶体旋转,以及尚未考虑的多粒子附着特有的缺陷产生途径,使无缺陷超晶格附着变得复杂。新的成像方法现在允许直接观察局部附着轨迹,并可能有助于更好地理解这种多粒子现象。随着进一步完善,在未来几年很可能实现一个统一的框架,用于理解并最终消除融合纳米晶体超结构中的结构缺陷。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验