Zhao Hongzheng, Mintert Florian, Moessner Roderich, Knolle Johannes
Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom.
Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany.
Phys Rev Lett. 2021 Jan 29;126(4):040601. doi: 10.1103/PhysRevLett.126.040601.
Driven quantum systems may realize novel phenomena absent in static systems, but driving-induced heating can limit the timescale on which these persist. We study heating in interacting quantum many-body systems driven by random sequences with n-multipolar correlations, corresponding to a polynomially suppressed low-frequency spectrum. For n≥1, we find a prethermal regime, the lifetime of which grows algebraically with the driving rate, with exponent 2n+1. A simple theory based on Fermi's golden rule accounts for this behavior. The quasiperiodic Thue-Morse sequence corresponds to the n→∞ limit and, accordingly, exhibits an exponentially long-lived prethermal regime. Despite the absence of periodicity in the drive, and in spite of its eventual heat death, the prethermal regime can host versatile nonequilibrium phases, which we illustrate with a random multipolar discrete time crystal.
受驱动的量子系统可能会实现静态系统中不存在的新现象,但驱动诱导的加热会限制这些现象持续的时间尺度。我们研究了由具有n - 多极关联的随机序列驱动的相互作用量子多体系统中的加热现象,这种关联对应于多项式抑制的低频谱。对于n≥1,我们发现了一个预热阶段,其寿命随驱动速率呈代数增长,指数为2n + 1。基于费米黄金定则的一个简单理论解释了这种行为。准周期的图厄 - 摩尔斯序列对应于n→∞的极限,因此表现出指数级长寿命的预热阶段。尽管驱动中没有周期性,且最终会热寂,但预热阶段可以容纳多种非平衡相,我们用随机多极离散时间晶体对此进行了说明。