CMT-Motores Térmicos, Universitat Politècnica de Valpencia, Camino de Vera, s/n, Valencia 46022, Spain.
Hospital General Universitari de Castelló, Avinguda de Benicàssim, 128, 12004 Castellón de la Plana, Castellón, Spain.
J Biomech. 2021 Mar 30;118:110302. doi: 10.1016/j.jbiomech.2021.110302. Epub 2021 Feb 4.
The coronavirus disease 2019 (COVID-19) is a potentially severe acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2. The potential for transmission of this disease has led to an important scarcity of health-care resources. Consequently, alternative solutions have been explored by many physicians and researchers. Non-invasive Ventilation has been revealed as one alternative for patients with associated acute respiratory distress syndrome. This technique is being used in combination with helmet-like interfaces because of their versatility and affordability. However, these interfaces could experience important problems of CO rebreathing, especially under low flow rate conditions. This work proposes a Computational Fluid Dynamics method to accurately characterize the fluid flow in a pre-design environment of helmet-like interfaces. Parameters as effective dead space, rebreathing, pressure, or temperature field distribution are quantified and analysed in detail in order to study the performance and feasibility of such devices to relieve the effects of respiratory infections.
新型冠状病毒病(COVID-19)是由严重急性呼吸综合征冠状病毒 2 引起的一种潜在严重的急性呼吸道感染。这种疾病具有传播的可能性,导致了医疗资源的严重短缺。因此,许多医生和研究人员都在探索替代方案。对于患有相关急性呼吸窘迫综合征的患者,无创通气已被证明是一种替代方法。由于其多功能性和可负担性,该技术正在与头盔式接口一起使用。然而,这些接口可能会遇到重要的 CO 再呼吸问题,尤其是在低流量条件下。这项工作提出了一种计算流体动力学方法,可以准确地描述头盔式接口的预设计环境中的流体流动。定量和详细分析了有效死腔、再呼吸、压力或温度场分布等参数,以研究这些设备缓解呼吸道感染影响的性能和可行性。