Suppr超能文献

在 COVID-19 大流行期间,对头盔样接口的再呼吸和有效死腔进行计算评估。

Computational evaluation of rebreathing and effective dead space on a helmet-like interface during the COVID-19 pandemic.

机构信息

CMT-Motores Térmicos, Universitat Politècnica de Valpencia, Camino de Vera, s/n, Valencia 46022, Spain.

Hospital General Universitari de Castelló, Avinguda de Benicàssim, 128, 12004 Castellón de la Plana, Castellón, Spain.

出版信息

J Biomech. 2021 Mar 30;118:110302. doi: 10.1016/j.jbiomech.2021.110302. Epub 2021 Feb 4.

Abstract

The coronavirus disease 2019 (COVID-19) is a potentially severe acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2. The potential for transmission of this disease has led to an important scarcity of health-care resources. Consequently, alternative solutions have been explored by many physicians and researchers. Non-invasive Ventilation has been revealed as one alternative for patients with associated acute respiratory distress syndrome. This technique is being used in combination with helmet-like interfaces because of their versatility and affordability. However, these interfaces could experience important problems of CO rebreathing, especially under low flow rate conditions. This work proposes a Computational Fluid Dynamics method to accurately characterize the fluid flow in a pre-design environment of helmet-like interfaces. Parameters as effective dead space, rebreathing, pressure, or temperature field distribution are quantified and analysed in detail in order to study the performance and feasibility of such devices to relieve the effects of respiratory infections.

摘要

新型冠状病毒病(COVID-19)是由严重急性呼吸综合征冠状病毒 2 引起的一种潜在严重的急性呼吸道感染。这种疾病具有传播的可能性,导致了医疗资源的严重短缺。因此,许多医生和研究人员都在探索替代方案。对于患有相关急性呼吸窘迫综合征的患者,无创通气已被证明是一种替代方法。由于其多功能性和可负担性,该技术正在与头盔式接口一起使用。然而,这些接口可能会遇到重要的 CO 再呼吸问题,尤其是在低流量条件下。这项工作提出了一种计算流体动力学方法,可以准确地描述头盔式接口的预设计环境中的流体流动。定量和详细分析了有效死腔、再呼吸、压力或温度场分布等参数,以研究这些设备缓解呼吸道感染影响的性能和可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52f/7857993/21d848af252f/gr1_lrg.jpg

相似文献

1
Computational evaluation of rebreathing and effective dead space on a helmet-like interface during the COVID-19 pandemic.
J Biomech. 2021 Mar 30;118:110302. doi: 10.1016/j.jbiomech.2021.110302. Epub 2021 Feb 4.
2
COVID-19 pandemic and non invasive respiratory management: Every Goliath needs a David. An evidence based evaluation of problems.
Pulmonology. 2020 Jul-Aug;26(4):213-220. doi: 10.1016/j.pulmoe.2020.04.013. Epub 2020 Apr 27.
5
Role of helmet ventilation during the 2019 coronavirus disease pandemic.
Sci Prog. 2022 Apr-Jun;105(2):368504221092891. doi: 10.1177/00368504221092891.
6
Intensive care for seriously ill patients affected by novel coronavirus sars - CoV - 2: Experience of the Crema Hospital, Italy.
Am J Emerg Med. 2021 Jul;45:156-161. doi: 10.1016/j.ajem.2020.08.005. Epub 2020 Aug 16.
8
Noninvasive Ventilation in Treatment of Respiratory Failure-Related COVID-19 Infection: Review of the Literature.
Can Respir J. 2022 Aug 31;2022:9914081. doi: 10.1155/2022/9914081. eCollection 2022.
9
Noninvasive Ventilation in the Management of Respiratory Failure Due to COVID-19 Infection: Experience From a Resource-Limited Setting.
Mayo Clin Proc. 2022 Jan;97(1):31-45. doi: 10.1016/j.mayocp.2021.10.002. Epub 2021 Oct 13.

本文引用的文献

2
Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data.
Int J Pharm. 2020 Sep 25;587:119599. doi: 10.1016/j.ijpharm.2020.119599. Epub 2020 Jul 11.
3
On coughing and airborne droplet transmission to humans.
Phys Fluids (1994). 2020 May 1;32(5):053310. doi: 10.1063/5.0011960.
6
Care for Critically Ill Patients With COVID-19.
JAMA. 2020 Apr 21;323(15):1499-1500. doi: 10.1001/jama.2020.3633.
7
The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2.
Nat Microbiol. 2020 Apr;5(4):536-544. doi: 10.1038/s41564-020-0695-z. Epub 2020 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验