Weber Jonas, Mißbach Claudia, Schmidt Johannes, Wenzel Christin, Schumann Stefan, Philip James H, Wirth Steffen
Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
Medicine (Baltimore). 2021 Feb 12;100(6):e23570. doi: 10.1097/MD.0000000000023570.
The Gas Man simulation software provides an opportunity to teach, understand and examine the pharmacokinetics of volatile anesthetics. The primary aim of this study was to investigate the accuracy of a cardiac output and alveolar ventilation matched Gas Man model and to compare its predictive performance with the standard pharmacokinetic model using patient data.Therefore, patient data from volatile anesthesia were successively compared to simulated administration of desflurane and sevoflurane for the standard and a parameter-matched simulation model with modified alveolar ventilation and cardiac output. We calculated the root-mean-square deviation (RMSD) between measured and calculated induction, maintenance and elimination and the expiratory decrement times during emergence and recovery for the standard and the parameter-matched model.During induction, RMSDs for the standard Gas Man simulation model were higher than for the parameter-matched Gas Man simulation model [induction (desflurane), standard: 1.8 (0.4) % Atm, parameter-matched: 0.9 (0.5) % Atm., P = .001; induction (sevoflurane), standard: 1.2 (0.9) % Atm, parameter-matched: 0.4 (0.4) % Atm, P = .029]. During elimination, RMSDs for the standard Gas Man simulation model were higher than for the parameter-matched Gas Man simulation model [elimination (desflurane), standard: 0.7 (0.6) % Atm, parameter-matched: 0.2 (0.2) % Atm, P = .001; elimination (sevoflurane), standard: 0.7 (0.5) % Atm, parameter-matched: 0.2 (0.2) % Atm, P = .008]. The RMSDs during the maintenance of anesthesia and the expiratory decrement times during emergence and recovery showed no significant differences between the patient and simulated data for both simulation models.Gas Man simulation software predicts expiratory concentrations of desflurane and sevoflurane in humans with good accuracy, especially when compared to models for intravenous anesthetics. Enhancing the standard model by ventilation and hemodynamic input variables increases the predictive performance of the simulation model. In most patients and clinical scenarios, the predictive performance of the standard Gas Man simulation model will be high enough to estimate pharmacokinetics of desflurane and sevoflurane with appropriate accuracy.
气体模型(Gas Man)模拟软件为讲授、理解和研究挥发性麻醉药的药代动力学提供了契机。本研究的主要目的是探究心输出量与肺泡通气量匹配的气体模型的准确性,并使用患者数据将其预测性能与标准药代动力学模型进行比较。因此,将挥发性麻醉的患者数据依次与标准模型以及肺泡通气和心输出量修正的参数匹配模拟模型给予地氟烷和七氟烷的模拟给药情况进行比较。我们计算了标准模型和参数匹配模型在诱导、维持和消除阶段实测值与计算值之间的均方根偏差(RMSD),以及苏醒和恢复阶段的呼气衰减时间。在诱导阶段,标准气体模型模拟模型的RMSD高于参数匹配的气体模型模拟模型[诱导(地氟烷),标准模型:1.8(0.4)%大气压,参数匹配模型:0.9(0.5)%大气压,P = 0.001;诱导(七氟烷),标准模型:1.2(0.9)%大气压,参数匹配模型:0.4(0.4)%大气压,P = 0.029]。在消除阶段,标准气体模型模拟模型的RMSD高于参数匹配的气体模型模拟模型[消除(地氟烷),标准模型:0.7(0.6)%大气压,参数匹配模型:0.2(0.2)%大气压,P = 0.001;消除(七氟烷),标准模型:0.7(0.5)%大气压,参数匹配模型:0.2(0.2)%大气压,P = 0.008]。两种模拟模型在麻醉维持阶段的RMSD以及苏醒和恢复阶段的呼气衰减时间在患者数据与模拟数据之间均无显著差异。气体模型模拟软件能较好地预测人体地氟烷和七氟烷的呼气浓度,尤其是与静脉麻醉药模型相比时。通过通气和血流动力学输入变量增强标准模型可提高模拟模型的预测性能。在大多数患者和临床场景中,标准气体模型模拟模型的预测性能足以准确估算地氟烷和七氟烷的药代动力学。