Zych Łukasz, Osyczka Anna Maria, Łacz Agnieszka, Różycka Agnieszka, Niemiec Wiktor, Rapacz-Kmita Alicja, Dzierzkowska Ewa, Stodolak-Zych Ewa
Department of Ceramics and Refractories, AGH University of Science and Technology, 30-059 Krakow, Poland.
Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland.
Materials (Basel). 2021 Feb 10;14(4):843. doi: 10.3390/ma14040843.
The aim of this work was to study effect of the type of silica nanoparticles on the properties of nanocomposites for application in the guided bone regeneration (GBR). Two types of nanometric silica particles with different size, morphology and specific surface area (SSA) i.e., high specific surface silica (hss-SiO) and low specific surface silica (lss-SiO), were used as nano-fillers for a resorbable polymer matrix: poly(L-lactide-co-D,L-lactide), called PLDLA. It was shown that higher surface specific area and morphology (including pore size distribution) recorded for hss-SiO influences chemical activity of the nanoparticle; in addition, hydroxyl groups appeared on the surface. The nanoparticle with 10 times lower specific surface area (lss-SiO) characterized lower chemical action. In addition, a lack of hydroxyl groups on the surface obstructed apatite nucleation (reduced zeta potential in comparison to hss-SiO), where an apatite layer appeared already after 48 h of incubation in the simulated body fluid (SBF), and no significant changes in crystallinity of PLDLA/lss-SiO nanocomposite material in comparison to neat PLDLA foil were observed. The presence and type of inorganic particles in the PLDLA matrix influenced various physicochemical properties such as the wettability, and the roughness parameter note for PLDLA/lss-SiO increased. The results of biological investigation show that the bioactive nanocomposites with hss-SiO may stimulate osteoblast and fibroblast cells'proliferation and secretion of collagen type I. Additionally, both nanocomposites with the nanometric silica inducted differentiation of mesenchymal cells into osteoblasts at a proliferation stage in in vitro conditions. A higher concentration of alkaline phosphatase (ALP) was observed on the material modified with hss-SiO silica.
这项工作的目的是研究二氧化硅纳米颗粒的类型对用于引导骨再生(GBR)的纳米复合材料性能的影响。两种具有不同尺寸、形态和比表面积(SSA)的纳米级二氧化硅颗粒,即高比表面积二氧化硅(hss-SiO)和低比表面积二氧化硅(lss-SiO),被用作可吸收聚合物基质聚(L-丙交酯-co-D,L-丙交酯)(称为PLDLA)的纳米填料。结果表明,hss-SiO具有更高的表面比表面积和形态(包括孔径分布),这会影响纳米颗粒的化学活性;此外,其表面出现了羟基。比表面积低10倍的纳米颗粒(lss-SiO)化学作用较低。此外,表面缺乏羟基阻碍了磷灰石成核(与hss-SiO相比,zeta电位降低),在模拟体液(SBF)中孵育48小时后就已出现磷灰石层,并且与纯PLDLA箔相比,未观察到PLDLA/lss-SiO纳米复合材料的结晶度有显著变化。PLDLA基质中无机颗粒的存在和类型影响了各种物理化学性质,如润湿性,并且PLDLA/lss-SiO的粗糙度参数增加。生物学研究结果表明,含有hss-SiO的生物活性纳米复合材料可能刺激成骨细胞和成纤维细胞的增殖以及I型胶原蛋白的分泌。此外,两种含有纳米级二氧化硅的纳米复合材料在体外增殖阶段均诱导间充质细胞分化为成骨细胞。在经hss-SiO二氧化硅改性的材料上观察到更高浓度的碱性磷酸酶(ALP)。