Liu Bing, Yang Tao, Mu Xin, Mai Zhijian, Li Hao, Wang Yao, Zhou Guofu
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China.
Nanomaterials (Basel). 2021 Feb 10;11(2):448. doi: 10.3390/nano11020448.
In a liquid crystal (LC) state, specific orientations and alignments of LC molecules produce outstanding anisotropy in structure and properties, followed by diverse optoelectronic functions. Besides organic LC molecules, other nonclassical components, including inorganic nanomaterials, are capable of self-assembling into oriented supramolecular LC mesophases by non-covalent interactions. Particularly, huge differences in size, shape, structure and properties within these components gives LC supramolecules higher anisotropy and feasibility. Therefore, hydrogen bonds have been viewed as the best and the most common option for supramolecular LCs, owing to their high selectivity and directionality. In this review, we summarize the newest advances in self-assembled structure, stimulus-responsive capability and application of supramolecular hydrogen-bonded LC nanosystems, to provide novel and immense potential for advancing LC technology.
在液晶(LC)状态下,LC分子的特定取向和排列在结构和性质上产生显著的各向异性,进而产生多种光电功能。除了有机LC分子外,包括无机纳米材料在内的其他非经典组分能够通过非共价相互作用自组装成取向超分子LC中间相。特别地,这些组分在尺寸、形状、结构和性质上的巨大差异赋予了LC超分子更高的各向异性和可行性。因此,氢键因其高选择性和方向性,被视为超分子LCs的最佳且最常见选择。在本综述中,我们总结了超分子氢键LC纳米系统在自组装结构、刺激响应能力和应用方面的最新进展,为推进LC技术提供新颖且巨大的潜力。