Suppr超能文献

协变原理与广义相对论的哈密顿表述

The Principle of Covariance and the Hamiltonian Formulation of General Relativity.

作者信息

Tessarotto Massimo, Cremaschini Claudio

机构信息

Department of Mathematics and Geosciences, University of Trieste, Via Valerio 12, 34127 Trieste, Italy.

Research Center for Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava, Bezručovo nám.13, CZ-74601 Opava, Czech Republic.

出版信息

Entropy (Basel). 2021 Feb 10;23(2):215. doi: 10.3390/e23020215.

Abstract

The implications of the general covariance principle for the establishment of a Hamiltonian variational formulation of classical General Relativity are addressed. The analysis is performed in the framework of the Einstein-Hilbert variational theory. Preliminarily, customary Lagrangian variational principles are reviewed, pointing out the existence of a novel variational formulation in which the class of variations remains unconstrained. As a second step, the conditions of validity of the non-manifestly covariant ADM variational theory are questioned. The main result concerns the proof of its intrinsic non-Hamiltonian character and the failure of this approach in providing a symplectic structure of space-time. In contrast, it is demonstrated that a solution reconciling the physical requirements of covariance and manifest covariance of variational theory with the existence of a classical Hamiltonian structure for the gravitational field can be reached in the framework of synchronous variational principles. Both path-integral and volume-integral realizations of the Hamilton variational principle are explicitly determined and the corresponding physical interpretations are pointed out.

摘要

探讨了广义协变原理对建立经典广义相对论哈密顿变分形式的影响。分析是在爱因斯坦 - 希尔伯特变分理论的框架内进行的。首先,回顾了传统的拉格朗日变分原理,指出存在一种新颖的变分形式,其中变分类别不受约束。第二步,对非明显协变的ADM变分理论的有效性条件提出质疑。主要结果涉及证明其内在的非哈密顿性质以及该方法在提供时空辛结构方面的失败。相比之下,证明了在同步变分原理的框架内,可以找到一种解决方案,使变分理论的协变物理要求和明显协变性与引力场经典哈密顿结构的存在相协调。明确确定了哈密顿变分原理的路径积分和体积积分实现,并指出了相应的物理解释。

相似文献

1
The Principle of Covariance and the Hamiltonian Formulation of General Relativity.
Entropy (Basel). 2021 Feb 10;23(2):215. doi: 10.3390/e23020215.
2
Unconstrained Lagrangian Variational Principles for the Einstein Field Equations.
Entropy (Basel). 2023 Feb 12;25(2):337. doi: 10.3390/e25020337.
3
The Heisenberg Indeterminacy Principle in the Context of Covariant Quantum Gravity.
Entropy (Basel). 2020 Oct 26;22(11):1209. doi: 10.3390/e22111209.
4
Stochastic discrete Hamiltonian variational integrators.
BIT Numer Math. 2018;58(4):1009-1048. doi: 10.1007/s10543-018-0720-2. Epub 2018 Aug 16.
5
A Generalized Variational Principle with Applications to Excited State Mean Field Theory.
J Chem Theory Comput. 2020 Mar 10;16(3):1526-1540. doi: 10.1021/acs.jctc.9b01105. Epub 2020 Feb 22.
6
Variational theory for thermodynamics of thermal waves.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 2A):046132. doi: 10.1103/PhysRevE.65.046132. Epub 2002 Apr 8.
7
Hamiltonian Computational Chemistry: Geometrical Structures in Chemical Dynamics and Kinetics.
Entropy (Basel). 2024 Apr 30;26(5):399. doi: 10.3390/e26050399.
8
Lagrangian particle path formulation of multilayer shallow-water flows dynamically coupled to vessel motion.
J Eng Math. 2017;106(1):75-106. doi: 10.1007/s10665-016-9893-3. Epub 2017 Jan 23.
9
Generalized Lagrangian Path Approach to Manifestly-Covariant Quantum Gravity Theory.
Entropy (Basel). 2018 Mar 19;20(3):205. doi: 10.3390/e20030205.
10
Noether's symmetry and conserved quantity for a time-delayed Hamiltonian system of Herglotz type.
R Soc Open Sci. 2018 Oct 3;5(10):180208. doi: 10.1098/rsos.180208. eCollection 2018 Oct.

引用本文的文献

1
The Dynamical Evolution Parameter in Manifestly Covariant Quantum Gravity Theory.
Entropy (Basel). 2025 Jun 5;27(6):604. doi: 10.3390/e27060604.
2
Unconstrained Lagrangian Variational Principles for the Einstein Field Equations.
Entropy (Basel). 2023 Feb 12;25(2):337. doi: 10.3390/e25020337.
3
The Quantum Regularization of Singular Black-Hole Solutions in Covariant Quantum Gravity.
Entropy (Basel). 2021 Mar 20;23(3):370. doi: 10.3390/e23030370.

本文引用的文献

1
The Heisenberg Indeterminacy Principle in the Context of Covariant Quantum Gravity.
Entropy (Basel). 2020 Oct 26;22(11):1209. doi: 10.3390/e22111209.
2
Generalized Lagrangian Path Approach to Manifestly-Covariant Quantum Gravity Theory.
Entropy (Basel). 2018 Mar 19;20(3):205. doi: 10.3390/e20030205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验