Suppr超能文献

动觉运动想象与视觉运动想象的特征比较。

Characterization of kinesthetic motor imagery compared with visual motor imageries.

机构信息

Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, 08826, Republic of Korea.

The Research Institute of Basic Sciences, Seoul National University, Seoul, Republic of Korea.

出版信息

Sci Rep. 2021 Feb 12;11(1):3751. doi: 10.1038/s41598-021-82241-0.

Abstract

Motor imagery (MI) is the only way for disabled subjects to robustly use a robot arm with a brain-machine interface. There are two main types of MI. Kinesthetic motor imagery (KMI) is proprioceptive (OR somato-) sensory imagination and Visual motor imagery (VMI) represents a visualization of the corresponding movement incorporating the visual network. Because these imagery tactics may use different networks, we hypothesized that the connectivity measures could characterize the two imageries better than the local activity. Electroencephalography data were recorded. Subjects performed different conditions, including motor execution (ME), KMI, VMI, and visual observation (VO). We tried to classify the KMI and VMI by conventional power analysis and by the connectivity measures. The mean accuracies of the classification of the KMI and VMI were 98.5% and 99.29% by connectivity measures (alpha and beta, respectively), which were higher than those by the normalized power (p < 0.01, Wilcoxon paired rank test). Additionally, the connectivity patterns were correlated between the ME-KMI and between the VO-VMI. The degree centrality (DC) was significantly higher in the left-S1 at the alpha-band in the KMI than in the VMI. The MI could be well classified because the KMI recruits a similar network to the ME. These findings could contribute to MI training methods.

摘要

运动想象(MI)是残疾受试者使用脑机接口机器人手臂的唯一有效方法。有两种主要类型的 MI。动觉运动想象(KMI)是本体感觉(或躯体感觉)的想象,而视觉运动想象(VMI)则代表对应运动的可视化,包括视觉网络。由于这些想象策略可能使用不同的网络,我们假设连通性测量可以比局部活动更好地描述这两种想象。记录了脑电图数据。受试者执行不同的条件,包括运动执行(ME)、KMI、VMI 和视觉观察(VO)。我们试图通过常规功率分析和连通性测量来对 KMI 和 VMI 进行分类。通过连通性测量(分别为 alpha 和 beta),KMI 和 VMI 的分类平均准确率分别为 98.5%和 99.29%,高于归一化功率的准确率(p<0.01,Wilcoxon 配对秩检验)。此外,ME-KMI 和 VO-VMI 之间的连通模式相关。在 KMI 中,alpha 波段左-S1 的度中心性(DC)明显高于 VMI。由于 KMI 招募了与 ME 相似的网络,因此可以很好地对 MI 进行分类。这些发现可能有助于 MI 训练方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f6a/7881019/6d9833b0b1f7/41598_2021_82241_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验