Precision Medicine Center of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
Sci Rep. 2021 Feb 12;11(1):3596. doi: 10.1038/s41598-020-80735-x.
Lung cancer is the leading cause of death worldwide. Especially, non-small cell lung cancer (NSCLC) has higher mortality rate than the other cancers. The high mortality rate is partially due to lack of efficient biomarkers for detection, diagnosis and prognosis. To find high efficient biomarkers for clinical diagnosis of NSCLC patients, we used gene differential expression and gene ontology (GO) to define a set of 26 tumor suppressor (TS) genes. The 26 TS genes were down-expressed in tumor samples in cohorts GSE18842, GSE40419, and GSE21933 and at stages 2 and 3 in GSE19804, and 15 TS genes were significantly down-expressed in tumor samples of stage 1. We used S-scores and N-scores defined in correlation networks to evaluate positive and negative influences of these 26 TS genes on expression of other functional genes in the four independent cohorts and found that SASH1, STARD13, CBFA2T3 and RECK were strong TS genes that have strong accordant/discordant effects and network effects globally impacting the other genes in expression and hence can be used as specific biomarkers for diagnosis of NSCLC cancer. Weak TS genes EXT1, PTCH1, KLK10 and APC that are associated with a few genes in function or work in a special pathway were not detected to be differentially expressed and had very small S-scores and N-scores in all collected datasets and can be used as sensitive biomarkers for diagnosis of early cancer. Our findings are well consistent with functions of these TS genes. GSEA analysis found that these 26 TS genes as a gene set had high enrichment scores at stages 1, 2, 3 and all stages.
肺癌是全球主要的死亡原因。尤其是非小细胞肺癌(NSCLC)的死亡率高于其他癌症。高死亡率部分归因于缺乏有效的生物标志物用于检测、诊断和预后。为了寻找用于 NSCLC 患者临床诊断的高效生物标志物,我们使用基因差异表达和基因本体(GO)定义了一组 26 个肿瘤抑制(TS)基因。在 GSE18842、GSE40419 和 GSE21933 队列的肿瘤样本中,以及在 GSE19804 的第 2 和第 3 阶段,这 26 个 TS 基因表达下调,在 GSE19804 的第 1 阶段,有 15 个 TS 基因在肿瘤样本中显著下调。我们使用在相关网络中定义的 S 分数和 N 分数来评估这 26 个 TS 基因对四个独立队列中其他功能基因表达的正向和负向影响,发现 SASH1、STARD13、CBFA2T3 和 RECK 是强 TS 基因,它们具有强一致/不一致效应和网络效应,全局影响表达中的其他基因,因此可作为 NSCLC 癌症诊断的特异性生物标志物。EXT1、PTCH1、KLK10 和 APC 等弱 TS 基因与少数功能相关基因或在特定途径中起作用的基因不相关,未检测到这些基因表达差异,在所有收集的数据集的 S 分数和 N 分数都非常小,可作为早期癌症诊断的敏感生物标志物。我们的发现与这些 TS 基因的功能非常一致。GSEA 分析发现,作为一个基因集,这些 26 个 TS 基因在 1 期、2 期、3 期和所有阶段的富集分数都很高。