Suppr超能文献

具有随机斜率和截距的混合效应模型的幂公式,用于比较组间变化率。

Power formulas for mixed effects models with random slope and intercept comparing rate of change across groups.

机构信息

Division of Biostatistics, School of Public Health & Human Longevity Science, University of California San Diego, 9500 Gilman Dr, 92093-0021 La Jolla, USA.

Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, USA.

出版信息

Int J Biostat. 2021 Jan 18;18(1):173-182. doi: 10.1515/ijb-2020-0107.

Abstract

We have previously derived power calculation formulas for cohort studies and clinical trials using the longitudinal mixed effects model with random slopes and intercepts to compare rate of change across groups [Ard & Edland, Power calculations for clinical trials in Alzheimer's disease. J Alzheim Dis 2011;21:369-77]. We here generalize these power formulas to accommodate 1) missing data due to study subject attrition common to longitudinal studies, 2) unequal sample size across groups, and 3) unequal variance parameters across groups. We demonstrate how these formulas can be used to power a future study even when the design of available pilot study data (i.e., number and interval between longitudinal observations) does not match the design of the planned future study. We demonstrate how differences in variance parameters across groups, typically overlooked in power calculations, can have a dramatic effect on statistical power. This is especially relevant to clinical trials, where changes over time in the treatment arm reflect background variability in progression observed in the placebo control arm plus variability in response to treatment, meaning that power calculations based only on the placebo arm covariance structure may be anticonservative. These more general power formulas are a useful resource for understanding the relative influence of these multiple factors on the efficiency of cohort studies and clinical trials, and for designing future trials under the random slopes and intercepts model.

摘要

我们之前已经使用具有随机斜率和截距的纵向混合效应模型为群组研究和临床试验推导出了功效计算公式,以比较组间变化率[Ard 和 Edland,用于阿尔茨海默病临床试验的功效计算。J Alzheim Dis 2011;21:369-77]。在这里,我们将这些功效公式推广到以下情况:1)由于纵向研究中常见的研究对象流失而导致的数据缺失,2)组间样本量不等,以及 3)组间方差参数不等。我们演示了如何即使现有试点研究数据的设计(即,纵向观察的数量和间隔)与计划的未来研究设计不匹配,也可以使用这些公式为未来研究提供功效。我们演示了组间方差参数的差异通常在功效计算中被忽略,但对统计功效有巨大影响。这在临床试验中尤为重要,因为治疗组随时间的变化反映了安慰剂对照组中观察到的进展的背景变异性加上对治疗的反应变异性,这意味着仅基于安慰剂组协方差结构的功效计算可能过于保守。这些更通用的功效公式是了解这些多个因素对群组研究和临床试验效率的相对影响的有用资源,并且是在随机斜率和截距模型下设计未来试验的有用资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c15/9156336/9756f47fc182/j_ijb-2020-0107_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验