Suppr超能文献

纵向设计中有缺失数据时,用于评估预测变量对斜率影响的功效分析方法比较。

A comparison of power analysis methods for evaluating effects of a predictor on slopes in longitudinal designs with missing data.

作者信息

Wang Cuiling, Hall Charles B, Kim Mimi

机构信息

Department of Epidemiology and Population Health, Albert Einstein College of Medicine of Yeshiva University, USA

Department of Epidemiology and Population Health, Albert Einstein College of Medicine of Yeshiva University, USA.

出版信息

Stat Methods Med Res. 2015 Dec;24(6):1009-29. doi: 10.1177/0962280212437452. Epub 2012 Feb 21.

Abstract

In many longitudinal studies, evaluating the effect of a binary or continuous predictor variable on the rate of change of the outcome, i.e. slope, is often of primary interest. Sample size determination of these studies, however, is complicated by the expectation that missing data will occur due to missed visits, early drop out, and staggered entry. Despite the availability of methods for assessing power in longitudinal studies with missing data, the impact on power of the magnitude and distribution of missing data in the study population remain poorly understood. As a result, simple but erroneous alterations of the sample size formulae for complete/balanced data are commonly applied. These 'naive' approaches include the average sum of squares and average number of subjects methods. The goal of this article is to explore in greater detail the effect of missing data on study power and compare the performance of naive sample size methods to a correct maximum likelihood-based method using both mathematical and simulation-based approaches. Two different longitudinal aging studies are used to illustrate the methods.

摘要

在许多纵向研究中,评估二元或连续预测变量对结果变化率(即斜率)的影响通常是主要关注点。然而,由于预期会因访视缺失、提前退出和交错入组而出现缺失数据,这些研究的样本量确定变得复杂。尽管有评估纵向研究中缺失数据时检验效能的方法,但对于研究人群中缺失数据的大小和分布对检验效能的影响仍知之甚少。因此,通常会简单但错误地改变用于完全/平衡数据的样本量公式。这些“简单”方法包括均方和法与平均受试者数量法。本文的目的是更详细地探讨缺失数据对研究检验效能的影响,并使用数学方法和基于模拟的方法,将简单样本量方法的性能与基于正确最大似然法的方法进行比较。使用两项不同的纵向衰老研究来说明这些方法。

相似文献

1
A comparison of power analysis methods for evaluating effects of a predictor on slopes in longitudinal designs with missing data.
Stat Methods Med Res. 2015 Dec;24(6):1009-29. doi: 10.1177/0962280212437452. Epub 2012 Feb 21.
2
Power and sample size calculations for evaluating mediation effects in longitudinal studies.
Stat Methods Med Res. 2016 Apr;25(2):686-705. doi: 10.1177/0962280212465163. Epub 2012 Dec 6.
3
Longitudinal data analysis with non-ignorable missing data.
Stat Methods Med Res. 2016 Feb;25(1):205-20. doi: 10.1177/0962280212448721. Epub 2012 May 24.
5
Estimation and comparison of rates of change in longitudinal studies with informative drop-outs.
Stat Med. 1999 May 30;18(10):1215-33. doi: 10.1002/(sici)1097-0258(19990530)18:10<1215::aid-sim118>3.0.co;2-6.
6
Sample size and power calculations for medical studies by simulation when closed form expressions are not available.
Stat Methods Med Res. 2013 Jun;22(3):324-45. doi: 10.1177/0962280212439578. Epub 2012 Apr 4.
7
Sample size determination for constrained longitudinal data analysis.
Stat Med. 2009 Feb 15;28(4):679-99. doi: 10.1002/sim.3507.

引用本文的文献

4
Power and Sample Size for Fixed-Effects Inference in Reversible Linear Mixed Models.
Am Stat. 2019;73(4):350-359. doi: 10.1080/00031305.2017.1415972. Epub 2018 Jun 4.
5
Power and sample size calculations for evaluating mediation effects in longitudinal studies.
Stat Methods Med Res. 2016 Apr;25(2):686-705. doi: 10.1177/0962280212465163. Epub 2012 Dec 6.

本文引用的文献

1
Power Calculations for General Linear Multivariate Models Including Repeated Measures Applications.
J Am Stat Assoc. 1992 Dec 1;87(420):1209-1226. doi: 10.1080/01621459.1992.10476281.
3
Effect of cognitive remediation on gait in sedentary seniors.
J Gerontol A Biol Sci Med Sci. 2010 Dec;65(12):1338-43. doi: 10.1093/gerona/glq127. Epub 2010 Jul 19.
4
Homocysteine and mobility in older adults.
J Am Geriatr Soc. 2010 Mar;58(3):545-50. doi: 10.1111/j.1532-5415.2010.02718.x. Epub 2010 Feb 11.
5
Sample size determination for constrained longitudinal data analysis.
Stat Med. 2009 Feb 15;28(4):679-99. doi: 10.1002/sim.3507.
6
Sample size determination for hierarchical longitudinal designs with differential attrition rates.
Biometrics. 2007 Sep;63(3):699-707. doi: 10.1111/j.1541-0420.2007.00769.x.
7
Power analyses for longitudinal study designs with missing data.
Stat Med. 2007 Jul 10;26(15):2958-81. doi: 10.1002/sim.2773.
8
Accounting for expected attrition in the planning of community intervention trials.
Stat Med. 2007 Jun 15;26(13):2615-28. doi: 10.1002/sim.2733.
9
Sample-size calculations for studies with correlated ordinal outcomes.
Stat Med. 2005 Oct 15;24(19):2977-87. doi: 10.1002/sim.2162.
10
Sample size for a two-group comparison of repeated binary measurements using GEE.
Stat Med. 2005 Sep 15;24(17):2583-96. doi: 10.1002/sim.2136.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验