Tan Qingke, Bao Shouchun, Kong Xiangli, Zheng Xiang, Xu Zhengguan, Hu Yunxiao, Liu Xuehua, Wang Chao, Xu Binghui
Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
J Colloid Interface Sci. 2021 May 15;590:580-590. doi: 10.1016/j.jcis.2021.01.079. Epub 2021 Feb 1.
The synergetic effect between two or more electrochemically active materials usually leads to superior lithium-ion storage performance. This work demonstrates a straightforward and effective approach to synthesize a reduced graphene oxide (RGO) encapsulated larger goethite (FeOOH) nanoparticles and smaller tin dioxide (SnO) quantum dots hierarchical composite (SnO@FeOOH/RGO). The synthesized SnO@FeOOH/RGO composite exhibits encouraging lithium-ion storage capability than controlled SnO/RGO and FeOOH/RGO samples with a stable specific capacity of 638 mAh·g under a high current rate of 1000 mA·g for 2000 continual cycles and good rate performance. The redox reaction between reductive metal-atoms or metal-ions and graphene oxide (GO) sheets guarantees an effective immobilization of corresponding nano-sized metal oxide and hydroxide crystals by the RGO framework. Furthermore, the engineered larger FeOOH crystals engage in lithium-ion storage and perform an ideal spacer between the restacked RGO sheets. Therefore, smaller SnO quantum dots' inherent excellent rate capability is extensively promoted due to the improvement of electrolyte diffusion and electron transfer condition. The sample design and fabrication method in this work might be developed for broader applications.
两种或更多种电化学活性材料之间的协同效应通常会带来卓越的锂离子存储性能。这项工作展示了一种直接有效的方法来合成还原氧化石墨烯(RGO)包裹的更大尺寸的针铁矿(FeOOH)纳米颗粒和更小尺寸的二氧化锡(SnO)量子点的分级复合材料(SnO@FeOOH/RGO)。所合成的SnO@FeOOH/RGO复合材料比对照的SnO/RGO和FeOOH/RGO样品展现出更令人鼓舞的锂离子存储能力,在1000 mA·g的高电流速率下连续循环2000次时具有638 mAh·g的稳定比容量以及良好的倍率性能。还原态金属原子或金属离子与氧化石墨烯(GO)片层之间的氧化还原反应确保了相应纳米尺寸的金属氧化物和氢氧化物晶体被RGO框架有效固定。此外,设计的更大尺寸的FeOOH晶体参与锂离子存储,并在重新堆叠的RGO片层之间起到理想的间隔作用。因此,由于电解质扩散和电子转移条件的改善,更小尺寸的SnO量子点固有的优异倍率性能得到了大幅提升。这项工作中的样品设计和制备方法可能会被开发用于更广泛的应用。
J Colloid Interface Sci. 2021-10-15
J Colloid Interface Sci. 2022-2-15
J Colloid Interface Sci. 2021-4-15