构建一种用于锂离子存储的、由分层还原氧化石墨烯和木质素磺酸盐衍生碳框架负载的二氧化锡纳米复合材料。
Engineering a hierarchical reduced graphene oxide and lignosulfonate derived carbon framework supported tin dioxide nanocomposite for lithium-ion storage.
作者信息
Yu Longbiao, Jia Ruixin, Liu Gonggang, Liu Xuehua, Hu Jinbo, Li Hongliang, Xu Binghui
机构信息
Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
出版信息
J Colloid Interface Sci. 2023 Dec;651:514-524. doi: 10.1016/j.jcis.2023.08.026. Epub 2023 Aug 6.
Tin dioxide (SnO) is widely recognized as a high-performance anode material for lithium-ion batteries. To simultaneously achieve satisfactory electrochemical performances and lower manufacturing costs, engineering nano-sized SnO and further immobilizing SnO with supportive carbon frameworks via eco-friendly and cost-effective approaches are challenging tasks. In this work, biomass sodium lignosulfonate (LS-Na), stannous chloride (SnCl) and a small amount of few-layered graphene oxide (GO) are employed as raw materials to engineer a hierarchical carbon framework supported SnO nanocomposite. The spontaneous chelation reaction between LS-Na and SnCl under mild hydrothermal condition generates the corresponding SnCl@LS sample with a uniform distribution of Sn in the LS domains, and the SnCl@LS sample is further dispersed by GO sheets via a redox coprecipitation reaction. After a thermal treatment, the SnCl@LS@GO sample is converted to the final SnO/LSC/RGO sample with an improved microstructure. The SnO/LSC/RGO nanocomposite exhibits excellent lithium-ion storage performances with a high specific capacity of 938.3 mAh/g after 600 cycles at 1000 mA g in half-cells and 517.1 mAh/g after 50 cycles at 200 mA g in full-cells. This work provides a potential strategy of engineering biomass derived high-performance electrode materials for rechargeable batteries.
二氧化锡(SnO)被广泛认为是一种用于锂离子电池的高性能阳极材料。为了同时实现令人满意的电化学性能并降低制造成本,通过环保且经济高效的方法对纳米级SnO进行工程设计并进一步用支撑性碳框架固定SnO是具有挑战性的任务。在这项工作中,生物质木质素磺酸钠(LS-Na)、氯化亚锡(SnCl)和少量的几层氧化石墨烯(GO)被用作原料来设计一种分级碳框架支撑的SnO纳米复合材料。在温和的水热条件下,LS-Na和SnCl之间的自发螯合反应生成了相应的SnCl@LS样品,其中Sn在LS域中均匀分布,并且SnCl@LS样品通过氧化还原共沉淀反应被GO片进一步分散。经过热处理后,SnCl@LS@GO样品转变为具有改善微观结构的最终SnO/LSC/RGO样品。SnO/LSC/RGO纳米复合材料表现出优异的锂离子存储性能,在半电池中以1000 mA g的电流密度循环600次后比容量高达938.3 mAh/g,在全电池中以200 mA g的电流密度循环50次后比容量为517.1 mAh/g。这项工作为工程设计用于可充电电池的生物质衍生高性能电极材料提供了一种潜在策略。