Suppr超能文献

针对同时选择抗生素抗性质粒的最小金属浓度的通用模型。

Towards a general model for predicting minimal metal concentrations co-selecting for antibiotic resistance plasmids.

机构信息

Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.

Gateway Building, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, LE12 5RD, UK.

出版信息

Environ Pollut. 2021 Apr 15;275:116602. doi: 10.1016/j.envpol.2021.116602. Epub 2021 Feb 6.

Abstract

Many antibiotic resistance genes co-occur with resistance genes for transition metals, such as copper, zinc, or mercury. In some environments, a positive correlation between high metal concentration and high abundance of antibiotic resistance genes has been observed, suggesting co-selection due to metal presence. Of particular concern is the use of copper and zinc in animal husbandry, leading to potential co-selection for antibiotic resistance in animal gut microbiomes, slurry, manure, or amended soils. For antibiotics, predicted no effect concentrations have been derived from laboratory measured minimum inhibitory concentrations and some minimal selective concentrations have been investigated in environmental settings. However, minimal co-selection concentrations for metals are difficult to identify. Here, we use mathematical modelling to provide a general mechanistic framework to predict minimal co-selective concentrations for metals, given knowledge of their toxicity at different concentrations. We apply the method to copper (Cu), zinc (Zn), mercury (Hg), lead (Pb) and silver (Ag), predicting their minimum co-selective concentrations in mg/L (Cu: 5.5, Zn: 1.6, Hg: 0.0156, Pb: 21.5, Ag: 0.152). To exemplify use of these thresholds, we consider metal concentrations from slurry and slurry-amended soil from a UK dairy farm that uses copper and zinc as additives for feed and antimicrobial footbath: the slurry is predicted to be co-selective, but not the slurry-amended soil. This modelling framework could be used as the basis for defining standards to mitigate risks of antimicrobial resistance applicable to a wide range of environments, including manure, slurry and other waste streams.

摘要

许多抗生素耐药基因与过渡金属(如铜、锌或汞)的耐药基因共存。在某些环境中,已经观察到高金属浓度和高抗生素耐药基因丰度之间存在正相关关系,这表明由于金属的存在而发生了共同选择。特别令人关注的是在畜牧业中使用铜和锌,这可能导致动物肠道微生物组、泥浆、粪便或改良土壤中的抗生素耐药性发生共同选择。对于抗生素,已经从实验室测量的最小抑菌浓度推导出了预测无影响浓度,并且已经在环境设置中研究了一些最小选择浓度。然而,金属的最小共同选择浓度很难确定。在这里,我们使用数学模型提供了一个通用的机制框架,用于预测金属的最小共同选择浓度,前提是了解它们在不同浓度下的毒性。我们将该方法应用于铜 (Cu)、锌 (Zn)、汞 (Hg)、铅 (Pb) 和银 (Ag),预测它们在 mg/L 下的最小共同选择浓度(Cu:5.5,Zn:1.6,Hg:0.0156,Pb:21.5,Ag:0.152)。为了举例说明这些阈值的使用,我们考虑了来自英国一家使用铜和锌作为饲料添加剂和抗菌洗脚池的奶牛场的泥浆和泥浆改良土壤中的金属浓度:预测泥浆具有共同选择性,但泥浆改良土壤没有。该建模框架可作为定义适用于广泛环境(包括粪便、泥浆和其他废水流)的抗微生物耐药性风险缓解标准的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验