Ranade Nanda V, Gharpure Damayanti C
Department of Electronic Science, Savitribai Phule Pune University, Pune, India.
J Electr Bioimpedance. 2019 Jul 2;10(1):2-13. doi: 10.2478/joeb-2019-0002. eCollection 2019 Jan.
Image reconstruction in EIT is an inverse problem, which is ill posed and hence needs regularization. Regularization brings stability to reconstructed EIT image with respect to noise in the measured data. But this is at the cost of smoothening of sharp edges and high curvature details of shapes in the image, affecting the quality. We propose a novel iterative regularization method based on detection of probable location of the inclusion, for locally relaxing the regularization by appropriate amount, to overcome this problem. Local relaxation around inclusion allows reconstruction of its high curvature shape details or sharp features at the same time giving benefits of higher regularization in remaining areas of the image. The proposed method called DeTER is implemented using a small plug-in to EIDORS (Electrical Impedance and Diffused Optical Reconstruction Software) in a MATLAB environment. Parameters like CNR, correlation coefficients of shape descriptor functions and relative size of reconstructed targets have been computed to evaluate the effectiveness of the technique. The performance of DeTER is tested and verified on simulated data added with Gaussian noise for inclusions of different shapes. Both conducting and nonconducting inclusions are considered. The method is validated using open EIT data shared by 'Finnish inverse problem society' and also by reconstructing image of internal void of a papaya fruit from the data acquired by an EIT system developed in our laboratory. The reconstructed images corresponding to the open EIT data clearly show the shapes similar to original objects, with sharp edges and curvature details. The shapes obtained in the papaya image are shown to correspond to the actual void using shape descriptor function. The results demonstrate that the proposed method enhances the sharp features in the reconstructed image with few iterations without causing geometric distortions like smoothening or rounding of the edges.
电阻抗断层成像(EIT)中的图像重建是一个逆问题,该问题不适定,因此需要正则化。正则化使重建的EIT图像相对于测量数据中的噪声具有稳定性。但这是以平滑图像中形状的尖锐边缘和高曲率细节为代价的,从而影响了图像质量。我们提出了一种基于检测包含物可能位置的新型迭代正则化方法,通过适当程度地局部放宽正则化来克服这个问题。在包含物周围进行局部放宽可以重建其高曲率形状细节或尖锐特征,同时在图像的其余区域获得更高正则化的益处。所提出的方法称为DeTER,是在MATLAB环境中通过一个小型插件在EIDORS(电阻抗和扩散光学重建软件)上实现的。已经计算了诸如对比度噪声比(CNR)、形状描述符函数的相关系数以及重建目标的相对大小等参数,以评估该技术的有效性。在添加了高斯噪声的不同形状包含物的模拟数据上对DeTER的性能进行了测试和验证。同时考虑了导电和非导电包含物。该方法通过使用“芬兰逆问题协会”共享的开放EIT数据进行了验证,并且还通过从我们实验室开发的EIT系统获取的数据重建木瓜果实内部空隙的图像进行了验证。与开放EIT数据对应的重建图像清楚地显示出与原始物体相似的形状,具有尖锐的边缘和曲率细节。使用形状描述符函数表明,在木瓜图像中获得的形状与实际空隙相对应。结果表明,所提出的方法通过少量迭代增强了重建图像中的尖锐特征,而不会引起诸如边缘平滑或变圆等几何失真。