Suppr超能文献

GREIT:一种用于肺部图像二维线性电阻抗断层成像重建的统一方法。

GREIT: a unified approach to 2D linear EIT reconstruction of lung images.

作者信息

Adler Andy, Arnold John H, Bayford Richard, Borsic Andrea, Brown Brian, Dixon Paul, Faes Theo J C, Frerichs Inéz, Gagnon Hervé, Gärber Yvo, Grychtol Bartłomiej, Hahn Günter, Lionheart William R B, Malik Anjum, Patterson Robert P, Stocks Janet, Tizzard Andrew, Weiler Norbert, Wolf Gerhard K

机构信息

Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada.

出版信息

Physiol Meas. 2009 Jun;30(6):S35-55. doi: 10.1088/0967-3334/30/6/S03. Epub 2009 Jun 2.

Abstract

Electrical impedance tomography (EIT) is an attractive method for clinically monitoring patients during mechanical ventilation, because it can provide a non-invasive continuous image of pulmonary impedance which indicates the distribution of ventilation. However, most clinical and physiological research in lung EIT is done using older and proprietary algorithms; this is an obstacle to interpretation of EIT images because the reconstructed images are not well characterized. To address this issue, we develop a consensus linear reconstruction algorithm for lung EIT, called GREIT (Graz consensus Reconstruction algorithm for EIT). This paper describes the unified approach to linear image reconstruction developed for GREIT. The framework for the linear reconstruction algorithm consists of (1) detailed finite element models of a representative adult and neonatal thorax, (2) consensus on the performance figures of merit for EIT image reconstruction and (3) a systematic approach to optimize a linear reconstruction matrix to desired performance measures. Consensus figures of merit, in order of importance, are (a) uniform amplitude response, (b) small and uniform position error, (c) small ringing artefacts, (d) uniform resolution, (e) limited shape deformation and (f) high resolution. Such figures of merit must be attained while maintaining small noise amplification and small sensitivity to electrode and boundary movement. This approach represents the consensus of a large and representative group of experts in EIT algorithm design and clinical applications for pulmonary monitoring. All software and data to implement and test the algorithm have been made available under an open source license which allows free research and commercial use.

摘要

电阻抗断层成像(EIT)是一种在机械通气期间对患者进行临床监测的有吸引力的方法,因为它可以提供肺部阻抗的无创连续图像,该图像指示通气的分布。然而,大多数肺部EIT的临床和生理研究是使用较旧的专有算法进行的;这是解释EIT图像的一个障碍,因为重建图像的特征不明确。为了解决这个问题,我们开发了一种用于肺部EIT的共识线性重建算法,称为GREIT(格拉茨EIT共识重建算法)。本文描述了为GREIT开发的线性图像重建的统一方法。线性重建算法的框架包括:(1)代表性成人和新生儿胸部的详细有限元模型;(2)对EIT图像重建的性能指标达成共识;(3)一种系统的方法,用于根据所需的性能指标优化线性重建矩阵。按重要性排序的共识性能指标为:(a)均匀幅度响应;(b)小且均匀的位置误差;(c)小的振铃伪影;(d)均匀分辨率;(e)有限的形状变形;(f)高分辨率。在保持小噪声放大以及对电极和边界移动的低敏感性的同时,必须达到这些性能指标。这种方法代表了EIT算法设计和肺部监测临床应用方面众多具有代表性的专家的共识。实现和测试该算法的所有软件和数据均已根据开源许可提供,允许免费研究和商业使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验