Suppr超能文献

用脑血流图测量脑血流自动调节:一项猪的对比研究。

Measurement of Cerebral Blood Flow Autoregulation with Rheoencephalography: A Comparative Pig Study.

作者信息

Bodo Michael, D Montgomery Leslie, J Pearce Frederick, Armonda Rocco

机构信息

Walter Reed Army Institute of Research, Silver Spring, MD, USA.

Current position: Tulane University School of Medicine, New Orleans, LA, USA.

出版信息

J Electr Bioimpedance. 2018 Dec 31;9(1):123-132. doi: 10.2478/joeb-2018-0017. eCollection 2018 Jan.

Abstract

Neuromonitoring is performed to prevent further (secondary) brain damage by detecting low brain blood flow following a head injury, stroke or neurosurgery. This comparative neuromonitoring study is part of an ongoing investigation of brain bioimpedance (rheoencephalography-REG) as a measuring modality for use in both civilian and military medical settings, such as patient transport, emergency care and neurosurgery intensive care. In a previous animal study, we validated that REG detects cerebral blood flow autoregulation (CBF AR), the body's physiological mechanism that protects the brain from adverse effects of low brain blood flow (hypoxia/ischemia). In the current descriptive pig study, the primary goal was to compare measurements of CBF AR made with REG to measurements made with other neuromonitoring modalities: laser Doppler flow (LDF); intracranial pressure (ICP); absolute CBF; carotid flow (CF); and systemic arterial pressure (SAP). Challenges administered to anesthetized pigs were severe induced hemorrhage (bleeding) and resuscitation; CO inhalation; and positive end expiratory pressure (PEEP). Data were stored on a computer and processed offline. After hemorrhage, the loss of CBF AR was detected by REG, ICP, and CF, all of which passively followed systemic arterial SAP after bleeding. Loss of CBF AR was the earliest indicator of low brain blood flow: loss of CBF AR occurred before a decrease in cardiac output, which is the cardiovascular response to hemorrhage. A secondary goal of this study was to validate the usefulness of new automated data processing software developed to detect the status of CBF AR. Both the new automated software and the traditional (observational) evaluation indicated the status of CBF AR. REG indicates the earliest breakdown of CBF AR; cessation of EEG for 2 seconds and respiration would be used as additional indicators of loss of CBF AR. The clinical significance of this animal study is that REG shows potential for use as a noninvasive, continuous and non-operator dependent neuromonitor of CBF AR in both civilian and military medical settings. Human validation studies of neuromonitoring with REG are currently in progress.

摘要

进行神经监测是为了通过检测头部受伤、中风或神经外科手术后的低脑血流量,预防进一步的(继发性)脑损伤。这项对比性神经监测研究是正在进行的一项关于脑生物阻抗(脑血流图-REG)作为一种测量方式的调查的一部分,该测量方式可用于民用和军事医疗环境,如患者转运、急救和神经外科重症监护。在之前的一项动物研究中,我们验证了REG能够检测脑血流自动调节(CBF AR),这是身体保护大脑免受低脑血流量(缺氧/缺血)不利影响的生理机制。在当前的描述性猪研究中,主要目标是将REG测量的CBF AR与其他神经监测方式测量的结果进行比较:激光多普勒血流仪(LDF);颅内压(ICP);绝对脑血流量(CBF);颈动脉血流(CF);以及体动脉压(SAP)。对麻醉猪施加的挑战包括严重的诱导性出血(失血)和复苏;一氧化碳吸入;以及呼气末正压(PEEP)。数据存储在计算机上并进行离线处理。出血后,REG、ICP和CF检测到CBF AR丧失,出血后它们均被动地跟随体动脉SAP变化。CBF AR丧失是低脑血流量的最早指标:CBF AR丧失发生在心脏输出量下降之前,而心脏输出量下降是对出血的心血管反应。本研究的第二个目标是验证为检测CBF AR状态而开发的新自动化数据处理软件的有效性。新的自动化软件和传统的(观察性)评估均表明了CBF AR的状态。REG表明CBF AR最早出现破坏;脑电图停止2秒和呼吸停止将用作CBF AR丧失的额外指标。这项动物研究的临床意义在于,REG显示出在民用和军事医疗环境中作为一种非侵入性、连续且不依赖操作人员的CBF AR神经监测仪的潜力。目前正在进行使用REG进行神经监测的人体验证研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/7852005/41dc60e9fde4/joeb-09-123-g001.jpg

相似文献

1
Measurement of Cerebral Blood Flow Autoregulation with Rheoencephalography: A Comparative Pig Study.
J Electr Bioimpedance. 2018 Dec 31;9(1):123-132. doi: 10.2478/joeb-2018-0017. eCollection 2018 Jan.
2
Thoracic, Peripheral, and Cerebral Volume, Circulatory and Pressure Responses To PEEP During Simulated Hemorrhage in a Pig Model: a Case Study.
J Electr Bioimpedance. 2021 Dec 27;12(1):103-116. doi: 10.2478/joeb-2021-0013. eCollection 2021 Jan.
3
Rheoencephalography: A non-invasive method for neuromonitoring.
J Electr Bioimpedance. 2024 Mar 13;15(1):10-25. doi: 10.2478/joeb-2024-0003. eCollection 2024 Jan.
4
Changes in the intracranial rheoencephalogram at lower limit of cerebral blood flow autoregulation.
Physiol Meas. 2005 Apr;26(2):S1-17. doi: 10.1088/0967-3334/26/2/001. Epub 2005 Mar 29.
5
Noninvasive neuromonitoring with rheoencephalography: a case report.
J Clin Monit Comput. 2023 Oct;37(5):1413-1422. doi: 10.1007/s10877-023-00985-8. Epub 2023 Mar 19.
6
Cerebrovascular reactivity: rat studies in rheoencephalography.
Physiol Meas. 2004 Dec;25(6):1371-84. doi: 10.1088/0967-3334/25/6/003.
8
Assessing rheoencephalography dynamics through analysis of the interactions among brain and cardiac networks during general anesthesia.
Front Netw Physiol. 2022 Aug 29;2:912733. doi: 10.3389/fnetp.2022.912733. eCollection 2022.
9
Laser Doppler flowmetry is valid for measurement of cerebral blood flow autoregulation lower limit in rats.
Exp Physiol. 2005 May;90(3):349-55. doi: 10.1113/expphysiol.2004.029512. Epub 2005 Jan 14.
10
Correlation of rheoencephalogram and intracranial pressure: results of a rat study.
Physiol Meas. 2015 Oct;36(10):N115-26. doi: 10.1088/0967-3334/36/10/N115. Epub 2015 Sep 3.

引用本文的文献

1
Rheoencephalography: A non-invasive method for neuromonitoring.
J Electr Bioimpedance. 2024 Mar 13;15(1):10-25. doi: 10.2478/joeb-2024-0003. eCollection 2024 Jan.
2
Thoracic, Peripheral, and Cerebral Volume, Circulatory and Pressure Responses To PEEP During Simulated Hemorrhage in a Pig Model: a Case Study.
J Electr Bioimpedance. 2021 Dec 27;12(1):103-116. doi: 10.2478/joeb-2021-0013. eCollection 2021 Jan.
3
Wearables for the Next Pandemic.
IEEE Access. 2020 Oct 6;8:184457-184474. doi: 10.1109/ACCESS.2020.3029130. eCollection 2020.
4
Segmental Intracellular, Interstitial, and Intravascular Volume Changes during Simulated Hemorrhage and Resuscitation: A Case Study.
J Electr Bioimpedance. 2019 Aug 20;10(1):40-46. doi: 10.2478/joeb-2019-0006. eCollection 2019 Jan.

本文引用的文献

1
Segmental Intracellular, Interstitial, and Intravascular Volume Changes during Simulated Hemorrhage and Resuscitation: A Case Study.
J Electr Bioimpedance. 2019 Aug 20;10(1):40-46. doi: 10.2478/joeb-2019-0006. eCollection 2019 Jan.
2
ICP Versus Laser Doppler Cerebrovascular Reactivity Indices to Assess Brain Autoregulatory Capacity.
Neurocrit Care. 2018 Apr;28(2):194-202. doi: 10.1007/s12028-017-0472-x.
3
Cerebral autoregulation monitoring in acute traumatic brain injury: what's the evidence?
Minerva Anestesiol. 2017 Aug;83(8):844-857. doi: 10.23736/S0375-9393.17.12043-2. Epub 2017 May 12.
4
The physiology of blood loss and shock: New insights from a human laboratory model of hemorrhage.
Exp Biol Med (Maywood). 2017 Apr;242(8):874-883. doi: 10.1177/1535370217694099. Epub 2017 Jan 1.
5
Predictors of Outcome With Cerebral Autoregulation Monitoring: A Systematic Review and Meta-Analysis.
Crit Care Med. 2017 Apr;45(4):695-704. doi: 10.1097/CCM.0000000000002251.
6
Spreading depolarization monitoring in neurocritical care of acute brain injury.
Curr Opin Crit Care. 2017 Apr;23(2):94-102. doi: 10.1097/MCC.0000000000000395.
8
Cerebral Blood-Flow Regulation During Hemorrhage.
Compr Physiol. 2015 Sep 20;5(4):1585-621. doi: 10.1002/cphy.c140058.
9
Cessation of vital signs monitored during lethal hemorrhage: a Swine study.
J Spec Oper Med. 2013 Winter;13(4):63-75. doi: 10.55460/20NR-BE1R.
10
Segmental blood flow and hemodynamic state of lymphedematous and nonlymphedematous arms.
Lymphat Res Biol. 2011 Mar;9(1):31-42. doi: 10.1089/lrb.2010.0012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验