Maeda Tomoya, Koch-Koerfges Abigail, Bott Michael
IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany.
Front Bioeng Biotechnol. 2021 Jan 20;8:621213. doi: 10.3389/fbioe.2020.621213. eCollection 2020.
The oxidation of NADH with the concomitant reduction of a quinone is a crucial step in the metabolism of respiring cells. In this study, we analyzed the relevance of three different NADH oxidation systems in the actinobacterial model organism by characterizing defined mutants lacking the non-proton-pumping NADH dehydrogenase Ndh (Δ) and/or one of the alternative NADH-oxidizing enzymes, L-lactate dehydrogenase LdhA (Δ) and malate dehydrogenase Mdh (Δ). Together with the menaquinone-dependent L-lactate dehydrogenase LldD and malate:quinone oxidoreductase Mqo, the LdhA-LldD and Mdh-Mqo couples can functionally replace Ndh activity. In glucose minimal medium the Δ mutant, but not the Δ and Δ strains, showed reduced growth and a lowered NAD/NADH ratio, in line with Ndh being the major enzyme for NADH oxidation. Growth of the double mutants ΔΔ and ΔΔ, but not of strain ΔΔ, in glucose medium was stronger impaired than that of the Δ mutant, supporting an active role of the alternative Mdh-Mqo and LdhA-LldD systems in NADH oxidation and menaquinone reduction. In L-lactate minimal medium the Δ mutant grew better than the wild type, probably due to a higher activity of the menaquinone-dependent L-lactate dehydrogenase LldD. The ΔΔ mutant failed to grow in L-lactate medium and acetate medium. Growth with L-lactate could be restored by additional deletion of , suggesting that repression by the transcriptional regulator SugR prevented growth on L-lactate medium. Attempts to construct a ΔΔΔ triple mutant were not successful, suggesting that Ndh, Mdh and LdhA cannot be replaced by other NADH-oxidizing enzymes in .
NADH的氧化与醌的伴随还原是呼吸细胞代谢中的关键步骤。在本研究中,我们通过对缺乏非质子泵NADH脱氢酶Ndh(Δ)和/或一种替代NADH氧化酶(L-乳酸脱氢酶LdhA(Δ)和苹果酸脱氢酶Mdh(Δ))的特定突变体进行表征,分析了三种不同NADH氧化系统在放线菌模式生物中的相关性。与甲萘醌依赖性L-乳酸脱氢酶LldD和苹果酸:醌氧化还原酶Mqo一起,LdhA-LldD和Mdh-Mqo对可以在功能上替代Ndh活性。在葡萄糖基本培养基中,Δ突变体(而非Δ和Δ菌株)生长减少且NAD/NADH比值降低,这与Ndh是NADH氧化的主要酶一致。双突变体ΔΔ和ΔΔ(而非ΔΔ菌株)在葡萄糖培养基中的生长比Δ突变体受到更强的损害,这支持了替代的Mdh-Mqo和LdhA-LldD系统在NADH氧化和甲萘醌还原中的积极作用。在L-乳酸基本培养基中Δ突变体比野生型生长得更好,这可能是由于甲萘醌依赖性L-乳酸脱氢酶LldD的活性更高。ΔΔ突变体在L-乳酸培养基和乙酸盐培养基中无法生长自。L-乳酸生长可通过额外缺失来恢复,这表明转录调节因子SugR的抑制作用阻止了在L-乳酸培养基上的生长。构建ΔΔΔ三重突变体的尝试未成功,这表明在中Ndh、Mdh和LdhA不能被其他NADH氧化酶替代。