Bannantine John P, Stabel Judith R, Bayles Darrell O, Conde Cyril, Biet Franck
USDA-Agricultural Research Service, National Animal Disease Center, Ames, IA, United States.
INRAE, Université de Tours, ISP, Nouzilly, France.
Front Vet Sci. 2021 Jan 28;7:620094. doi: 10.3389/fvets.2020.620094. eCollection 2020.
Over a decade ago subspecies () specific genes were initially identified in a whole genome context by comparing draft genome sequences of strain K-10 with subspecies () strain 104. This resulted in identification of 32 specific genes, not including repetitive elements, based on the two-genome comparison. The goal of this study was to define a more complete catalog of subspecies-specific genes. This is important for obtaining additional diagnostic targets for Johne's disease detection and for understanding the unique biology, evolution and niche adaptation of these organisms. There are now over 28 complete genome sequences representing three subspecies, including (), , and . We have conducted a comprehensive comparison of these genomes using two independent pan genomic comparison tools, PanOCT and Roary. This has led to the identification of more than 250 subspecies defining genes common to both analyses. The majority of these genes are arranged in clusters called genomic islands. We further reduced the number of diagnostic targets by excluding sequences having high BLAST similarity to other mycobacterial species recently added to the National Center for Biotechnology Information database. Genes identified as diagnostic following these bioinformatic approaches were further tested by DNA amplification PCR on an additional 20 subspecies strains. This combined approach confirmed 86 genes as -specific, seven as -specific and three as -specific. A single-tube PCR reaction was conducted as a proof of concept method to quickly distinguish subspecies strains. With these novel data, researchers can classify isolates in their freezers, quickly characterize clinical samples, and functionally analyze these unique genes.
十多年前,通过比较K - 10菌株与副结核分枝杆菌(Mycobacterium avium subspecies paratuberculosis)104菌株的基因组草图序列,首次在全基因组背景下鉴定出亚种特异性基因。基于两基因组比较,这导致鉴定出32个亚种特异性基因,不包括重复元件。本研究的目的是定义一个更完整的亚种特异性基因目录。这对于获得用于检测副结核病的额外诊断靶点以及理解这些生物体独特的生物学、进化和生态位适应性很重要。现在有超过28个代表三个副结核分枝杆菌亚种的完整基因组序列,包括副结核分枝杆菌(Mycobacterium avium subspecies paratuberculosis)、鸟分枝杆菌(Mycobacterium avium)和胞内分枝杆菌(Mycobacterium intracellulare)。我们使用两种独立的泛基因组比较工具PanOCT和Roary对这些基因组进行了全面比较。这导致鉴定出两种分析共有的250多个亚种定义基因。这些基因中的大多数排列在称为基因组岛的簇中。我们通过排除与最近添加到美国国立生物技术信息中心数据库中的其他分枝杆菌物种具有高BLAST相似性的序列,进一步减少了诊断靶点的数量。通过这些生物信息学方法鉴定为诊断性的基因,在另外20个副结核分枝杆菌亚种菌株上通过DNA扩增PCR进一步测试。这种组合方法确认了86个基因是副结核分枝杆菌特异性的,7个是鸟分枝杆菌特异性的,3个是胞内分枝杆菌特异性的。进行了单管PCR反应作为一种概念验证方法,以快速区分副结核分枝杆菌亚种菌株。有了这些新数据,研究人员可以对冰箱中的分离株进行分类,快速表征临床样本,并对这些独特基因进行功能分析。