Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109-2029, USA.
G3 (Bethesda). 2021 Feb 9;11(2). doi: 10.1093/g3journal/jkaa056.
Over the last decade, GWAS meta-analyses have used a strict P-value threshold of 5 × 10-8 to classify associations as significant. Here, we use our current understanding of frequently studied traits including lipid levels, height, and BMI to revisit this genome-wide significance threshold. We compare the performance of studies using the P = 5 × 10-8 threshold in terms of true and false positive rate to other multiple testing strategies: (1) less stringent P-value thresholds, (2) controlling the FDR with the Benjamini-Hochberg and Benjamini-Yekutieli procedure, and (3) controlling the Bayesian FDR with posterior probabilities. We applied these procedures to re-analyze results from the Global Lipids and GIANT GWAS meta-analysis consortia and supported them with extensive simulation that mimics the empirical data. We observe in simulated studies with sample sizes ∼20,000 and >120,000 that relaxing the P-value threshold to 5 × 10-7 increased discovery at the cost of 18% and 8% of additional loci being false positive results, respectively. FDR and Bayesian FDR are well controlled for both sample sizes with a few exceptions that disappear under a less stringent definition of true positives and the two approaches yield similar results. Our work quantifies the value of using a relaxed P-value threshold in large studies to increase their true positive discovery but also show the excess false positive rates due to such actions in modest-sized studies. These results may guide investigators considering different thresholds in replication studies and downstream work such as gene-set enrichment or pathway analysis. Finally, we demonstrate the viability of FDR-controlling procedures in GWAS.
在过去的十年中,GWAS 荟萃分析使用严格的 P 值阈值 5×10-8 将关联分类为显著。在这里,我们利用我们目前对经常研究的特征(包括血脂水平、身高和 BMI)的理解,重新审视这个全基因组显著性阈值。我们比较了使用 P=5×10-8 阈值的研究在真阳性率和假阳性率方面的表现,与其他多重检验策略相比:(1)更宽松的 P 值阈值;(2)使用 Benjamini-Hochberg 和 Benjamini-Yekutieli 程序控制 FDR;(3)使用后验概率控制贝叶斯 FDR。我们将这些程序应用于重新分析来自全球脂质和 GIANT GWAS 荟萃分析联盟的结果,并通过模拟经验数据的广泛模拟来支持它们。我们在模拟研究中观察到,在样本量约为 20000 和>120000 的情况下,放宽 P 值阈值至 5×10-7 会以 18%和 8%的额外假阳性结果为代价增加发现,但 FDR 和贝叶斯 FDR 都得到了很好的控制,只有少数例外情况在更宽松的真阳性定义下消失,两种方法的结果相似。我们的工作量化了在大型研究中使用放宽的 P 值阈值来增加其真阳性发现的价值,但也显示了在适度样本量的研究中由于这种方法而导致的额外假阳性率。这些结果可能会指导研究人员在复制研究和下游工作(如基因集富集或通路分析)中考虑不同的阈值。最后,我们展示了 FDR 控制程序在 GWAS 中的可行性。