Verbrigghe Niel, Muylle Hilde, Pegard Marie, Rietman Hendrik, Đorđević Vuk, Ćeran Marina, Roldán-Ruiz Isabel
Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium.
Unité de Recherche Pluridisciplinaire Prairies Et Plantes Fourragères (P3F), INRAE, Lusignan, France.
Plant Methods. 2025 Aug 25;21(1):119. doi: 10.1186/s13007-025-01434-0.
Integrating genotype-by-Environment (GxE) interactions into genomic prediction models has been demonstrated to enhance the accuracy of predictions for crops exposed to unfavourable environmental conditions. However, despite the increasing complexity of machine learning models in genomic prediction, no model or approach has been found to be overall superior in comparison to a classical genomic best linear unbiased prediction (GBLUP) model. In this paper, we compared two GBLUP models (Linear Mixed Effects model and Bayesian GBLUP) with two machine learning models (Random Forest and Extreme Gradient Boosting) on the EUCLEG soybean genotype set phenotyped in Belgium and Serbia. We found similar performance for the Bayesian GBLUP and the two machine learning methods. However, using a workflow that decomposed the environment-specific BLUPs into a main genetic and an interaction GxE effect, we found increased predictive ability for the interaction component compared to a single-component approach. Furthermore, conducting a machine learning-genome wide association study (ML-GWAS) on both components allowed us to identify important markers for the main genetic effect, as well as environment-specific markers. These could then be associated with correlated markers in other environments. By constructing a small random forest model using only 50 uncorrelated, important markers we constructed a genomic prediction model with similar predictive ability over all scenarios when compared to the large models including all markers. The results demonstrate a new, integrated genomic prediction and machine learning-genome-wide association study (ML-GWAS) approach, aimed at high predictive ability and coupled marker detection in the soybean genome for traits phenotyped in different environments.
将基因型与环境互作(GxE)整合到基因组预测模型中,已被证明可提高对处于不利环境条件下作物预测的准确性。然而,尽管基因组预测中机器学习模型的复杂性不断增加,但与经典的基因组最佳线性无偏预测(GBLUP)模型相比,尚未发现有模型或方法在整体上更具优势。在本文中,我们对比了两个GBLUP模型(线性混合效应模型和贝叶斯GBLUP)与两个机器学习模型(随机森林和极端梯度提升),数据来自于在比利时和塞尔维亚进行表型分析的EUCLEG大豆基因型集。我们发现贝叶斯GBLUP和这两种机器学习方法具有相似的性能。然而,通过一种将特定环境下的BLUP分解为主要遗传效应和互作GxE效应的工作流程,我们发现与单组分方法相比,互作组分的预测能力有所提高。此外,对这两个组分进行机器学习-全基因组关联研究(ML-GWAS),使我们能够识别出主要遗传效应的重要标记以及特定环境的标记。然后可以将这些标记与其他环境中的相关标记关联起来。通过仅使用50个不相关的重要标记构建一个小型随机森林模型,我们构建了一个基因组预测模型,与包含所有标记的大型模型相比,在所有情况下都具有相似的预测能力。结果展示了一种新的、整合的基因组预测和机器学习-全基因组关联研究(ML-GWAS)方法,旨在实现高预测能力,并在大豆基因组中针对不同环境下表型性状进行标记检测。