Department of Physics, Indian Institute of Technology Kharagpur, WB 721302, India.
Phys Chem Chem Phys. 2021 Feb 25;23(7):4195-4204. doi: 10.1039/d0cp04813e.
The formation of aggregates and amyloids, a hallmark of many protein misfolding diseases, depends on many intrinsic and extrinsic factors. Many approaches (in vitro, in vivo, and in silico) have been attempted to inhibit the aggregation process so that the progression of these diseases can be controlled. We investigate the effect of a static electric field (EF; 120 V cm-1 and 200 V cm-1) on the conformational change of elastin protein using light scattering, spectroscopy, and microscopy techniques. Laser light scattering and photoluminescence spectroscopy show the formation of fibrils of unexposed elastin with aging, whereas disruption of fibril formation with EF exposed elastin. The size of EF exposed elastin first increases and exhibits an apex, and subsequently decreases with an increasing time of exposure. We observed that a decrease in the size of EF exposed elastin depends on the strength of the EF, faster decrement at higher EF. FTIR data show that EF modifies elastin protein's secondary structures; it facilitates the interconversion of β-sheets and turns into α-helix structures. The SEM images of unexposed and EF exposed elastin confirms the observation through light scattering and PL techniques. The effect of an EF on protein conformation and amyloids is promising to treat Parkinson's disease, a protein misfolding disease.
聚集物和淀粉样蛋白的形成是许多蛋白质错误折叠疾病的标志,这取决于许多内在和外在因素。已经尝试了许多方法(体外、体内和计算)来抑制聚集过程,从而控制这些疾病的进展。我们使用光散射、光谱和显微镜技术研究了静电场(EF;120 V cm-1 和 200 V cm-1)对弹性蛋白蛋白构象变化的影响。激光光散射和光致发光光谱显示,未暴露的弹性蛋白随着老化形成原纤维,而 EF 暴露的弹性蛋白则破坏了原纤维的形成。EF 暴露的弹性蛋白的大小先增加并表现出一个顶点,随后随着暴露时间的增加而减小。我们观察到 EF 暴露的弹性蛋白的大小减小取决于 EF 的强度,EF 越高,减小速度越快。FTIR 数据表明 EF 改变了弹性蛋白的二级结构;它促进了β-折叠和α-螺旋结构的相互转化。未暴露和 EF 暴露的弹性蛋白的 SEM 图像通过光散射和 PL 技术证实了这一观察结果。EF 对蛋白质构象和淀粉样蛋白的影响有望治疗帕金森病,这是一种蛋白质错误折叠疾病。