Bernstein Center for Computational Neuroscience, Faculty of Medicine, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany.
Elife. 2021 Feb 15;10:e61940. doi: 10.7554/eLife.61940.
Cholinergic fast time-scale modulation of cortical physiology is critical for cognition, but direct local measurement of neuromodulators in vivo is challenging. Choline oxidase (ChOx)-based electrochemical biosensors have been used to capture fast cholinergic signals in behaving animals. However, these transients might be biased by local field potential and O-evoked enzymatic responses. Using a novel Tetrode-based Amperometric ChOx (TACO) sensor, we performed highly sensitive and selective simultaneous measurement of ChOx activity (COA) and O. In vitro and in vivo experiments, supported by mathematical modeling, revealed that non-steady-state enzyme responses to O give rise to phasic COA dynamics. This mechanism accounts for most of COA transients in the hippocampus, including those following locomotion bouts and sharp-wave/ripples. Our results suggest that it is unfeasible to probe phasic cholinergic signals under most behavioral paradigms with current ChOx biosensors. This confound is generalizable to any oxidase-based biosensor, entailing rigorous controls and new biosensor designs.
胆碱能快速时间尺度调制皮质生理学对认知至关重要,但直接在体内测量神经调质具有挑战性。基于胆碱氧化酶(ChOx)的电化学生物传感器已被用于捕获行为动物中的快速胆碱能信号。然而,这些瞬态可能会受到局部场电位和 O 诱发的酶反应的影响。使用新型四极管安培 ChOx(TACO)传感器,我们进行了高度敏感和选择性的同时测量 ChOx 活性(COA)和 O。体外和体内实验,辅以数学建模,揭示了 O 对非稳态酶反应导致了相 COA 动力学。该机制解释了海马体中大多数 COA 瞬变的原因,包括运动发作和尖波/涟漪后的瞬变。我们的结果表明,在大多数行为范式下,当前的 ChOx 生物传感器不可能探测到相胆碱能信号。这种混淆是普遍存在的,适用于任何基于氧化酶的生物传感器,需要严格的控制和新的生物传感器设计。