Suppr超能文献

MoO:CoMoO作为锂离子电池负极材料的共激活转化反应

Co-activated Conversion Reaction of MoO:CoMoO as a Negative Electrode Material for Lithium-Ion Batteries.

作者信息

Jang Jihyun, Ku Jun H, Oh Seung M, Yoon Taeho

机构信息

Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea.

School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2021 Mar 3;13(8):9814-9819. doi: 10.1021/acsami.0c19894. Epub 2021 Feb 15.

Abstract

Extensive studies to develop high-capacity electrodes have been conducted worldwide to meet the urgent demand for next-generation lithium-ion batteries. In this work, we demonstrated a novel strategy to alter the lithiation mechanism of the transition metal oxide to increase the reversible capacity of the electrode material. A representative insertion-type negative electrode material, MoO, was modified by introducing a heterogeneous element (Co) to synthesize the solid solution of CoO and MoO (CoMoO). CoMoO exhibited a notably improved reversible capacity of 860 mA h g, attributed to the conversion reaction, in contrast to MoO that delivers 310 mA h g, as it is limited by the insertion reaction. X-ray absorption spectroscopy and X-ray diffraction demonstrated that CoO is converted to Co and LiO, amorphizing the host structure, whereas the conversion of MoO takes place subsequently. Furthermore, the superior initial Coulombic efficiency of CoMoO (84.4%) to that of typical conversion materials is attributed to the highly conductive Co and MoO, which reinforce the electronic conductivity of the active particles. The results obtained from this study provide significant insights to explore high capacity metal oxides for the advanced lithium-ion batteries.

摘要

为满足下一代锂离子电池的迫切需求,全球范围内已开展了大量关于开发高容量电极的研究。在这项工作中,我们展示了一种新颖的策略,可改变过渡金属氧化物的锂化机制,以提高电极材料的可逆容量。通过引入异质元素(Co)对典型的嵌入型负极材料MoO进行改性,合成了CoO和MoO的固溶体(CoMoO)。与仅通过嵌入反应实现310 mA h g容量的MoO相比,CoMoO由于发生了转化反应,展现出显著提高的860 mA h g可逆容量。X射线吸收光谱和X射线衍射表明,CoO转化为Co和LiO,使主体结构非晶化,随后MoO发生转化。此外,CoMoO具有优于典型转化材料的初始库仑效率(84.4%),这归因于高导电性的Co和MoO增强了活性颗粒的电子导电性。本研究所得结果为探索用于先进锂离子电池的高容量金属氧化物提供了重要见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验