Zhang Yang, Wang Wei, Lasorne Benjamin, Su Peifeng, Wu Wei
Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, The State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34090, France.
J Phys Chem Lett. 2021 Feb 25;12(7):1885-1892. doi: 10.1021/acs.jpclett.0c03506. Epub 2021 Feb 15.
In the present work, the valence-bond-based compression approach for diabatization (VBCAD), previously presented in the literature [. 2020, 11, 5295-5301] in the case of avoided crossings, is extended to the more general situation of conical intersections and their vicinity. A pointwise phase-correction scheme for diabatic states is proposed, based on the explicit use of the peculiarities of the nonorthogonality of valence bond (VB) theory. Rather than fitting or propagating nonadiabatic couplings, it allows us to determine the phase of diabatic states consistently and automatically at each geometry point. Moreover, it is shown that the undetermination of degenerate states around a conical intersection can be fixed naturally from a straightforward classical VB picture. These are illustrated with two prototypical symmetry-induced (Jahn-Teller) conical intersection models.
在本工作中,先前文献[2020, 11, 5295 - 5301]中针对避免交叉情况提出的基于价键的 diabatic 化压缩方法(VBCAD)被扩展到锥形交叉及其附近更一般的情况。基于明确利用价键(VB)理论非正交性的特性,提出了一种针对 diabatic 态的逐点相位校正方案。它不是拟合或传播非绝热耦合,而是允许我们在每个几何点一致且自动地确定 diabatic 态的相位。此外,结果表明,锥形交叉周围简并态的不确定性可以从直接的经典 VB 图像中自然地得到解决。通过两个典型的对称诱导(Jahn - Teller)锥形交叉模型对这些内容进行了说明。