House D H
Computer Science Department, Williams College, Williamstown, MA 01267.
Biol Cybern. 1988;58(3):173-92. doi: 10.1007/BF00364137.
In this paper we demonstrate how prey localization can be achieved rapidly and accurately by coupling prey-selection and lens-accommodation processes within a feedback loop. Information derived from prey selection supplies a setpoint for accommodation. In turn, adjustment of the lens modifies the visual input and can alter the prey selection process. The natural feedback of this goal-seeking system automatically corrects for the problem of ambiguity in binocular matching. Although it is of general interest as a depth algorithm, we tie the model to the known anatomy, physiology and behavior of frogs and toads. Instead of building a global depth-map we propose that the goal of catching a prey leads a frog or toad to select a particular region of its visual world for special scrutiny. We suggest that the first step of the prey-catching sequence is to adjust the accommodative state of the lenses and thus lock the visual apparatus on to a stimulus. We identify brain regions that could provide the neural substrates necessary to support the model's various functional stages and present experiments, with a computer simulation, that compare its functioning to animal behavior.
在本文中,我们展示了如何通过在反馈回路中耦合猎物选择和晶状体调节过程,快速而准确地实现猎物定位。从猎物选择中获得的信息为调节提供了一个设定点。反过来,晶状体的调节会改变视觉输入,并可能改变猎物选择过程。这个目标导向系统的自然反馈会自动校正双目匹配中的模糊性问题。尽管作为一种深度算法它具有普遍的研究价值,但我们将该模型与青蛙和蟾蜍已知的解剖结构、生理学和行为联系起来。我们提出,捕捉猎物的目标会引导青蛙或蟾蜍选择其视觉世界中的特定区域进行特别审视,而不是构建一个全局深度图。我们认为,捕食序列的第一步是调整晶状体的调节状态,从而将视觉器官锁定在一个刺激上。我们确定了能够为支持模型各个功能阶段提供必要神经基质的脑区,并通过计算机模拟展示了实验,将其功能与动物行为进行了比较。