Chingo Aimacaña Cristhian Marcelo, Quinchiguango Perez Dilan Andres, Rocha Pinto Suyene, Debut Alexis, Attia Mohamed F, Santos-Oliveira Ralph, Whitehead Daniel C, Terencio Thibault, Alexis Frank, Dahoumane Si Amar
School of Physical Sciences and Nanotechnology, Yachay Tech University, 100650 Urcuquí, Ecuador.
School of Biological Sciences and Engineering, Yachay Tech University, 100650 Urcuquí, Ecuador.
ACS Biomater Sci Eng. 2021 Mar 8;7(3):1181-1191. doi: 10.1021/acsbiomaterials.0c01635. Epub 2021 Feb 16.
Various noninvasive imaging techniques are used to produce deep-tissue and high-resolution images for biomedical research and clinical purposes. Organic and inorganic bioimaging agents have been developed to enhance the resolution and contrast intensity. This paper describes the synthesis of polytetrafluoroethylene-like nanoparticles (PTFE≈ NPs), their characterization, biological activity, and bioimaging properties. Transmission electron microscopy (TEM) images showed the shape and the size of the as-obtained small and ultrasmall PTFE≈ NPs. Fourier transform infrared spectroscopy (FTIR) confirmed the PTFE-like character of the samples. X-ray diffraction (XRD) enabled the determination of the crystallization system, cell lattice, and index of crystallinity of the material in addition to the presence of titania (TiO) as the contamination. These findings were corroborated by X-ray photoelectron spectroscopy (XPS) that identifies the chemical states of the elements present in the samples along with their atomic percentages allowing the determination of both the purity index of the sample and the nature of the impurities. Additionally, diffuse reflectance ultraviolet-visible spectroscopy (UV-vis) was used to further assess the optical properties of the materials. Importantly, PTFE≈ NPs showed significant and biocompatibility. Lastly, PTFE≈ NPs were tested for their ultrasound and X-ray contrast properties. Our encouraging preliminary results open new avenues for PTFE-like nanomaterials as a suitable multifunctional contrast agent for biomedical imaging applications. Combined with suitable surface chemistry and morphology design, these findings shed light to new opportunities offered by PTFE nanoparticles in the ever-booming biomedical field.
各种非侵入性成像技术被用于生成用于生物医学研究和临床目的的深层组织和高分辨率图像。已经开发出有机和无机生物成像剂以提高分辨率和对比度。本文描述了聚四氟乙烯样纳米颗粒(PTFE≈ NPs)的合成、表征、生物活性和生物成像特性。透射电子显微镜(TEM)图像显示了所获得的小尺寸和超小尺寸PTFE≈ NPs的形状和大小。傅里叶变换红外光谱(FTIR)证实了样品的聚四氟乙烯样特征。X射线衍射(XRD)除了能确定材料中二氧化钛(TiO)作为污染物的存在外,还能确定材料的结晶系统、晶格和结晶度指数。这些发现得到了X射线光电子能谱(XPS)的证实,XPS可以识别样品中存在的元素的化学状态及其原子百分比,从而确定样品的纯度指数和杂质的性质。此外,漫反射紫外-可见光谱(UV-vis)被用于进一步评估材料的光学性质。重要的是,PTFE≈ NPs显示出显著的生物相容性。最后,对PTFE≈ NPs的超声和X射线造影特性进行了测试。我们令人鼓舞的初步结果为聚四氟乙烯样纳米材料作为生物医学成像应用的合适多功能造影剂开辟了新途径。结合合适的表面化学和形态设计,这些发现揭示了聚四氟乙烯纳米颗粒在蓬勃发展的生物医学领域提供的新机会。